研究生: |
王偉丞 |
---|---|
論文名稱: |
利用「基於電荷特性之電容量測法」作為CMOS MEMS單軸加速度計電容讀取電路 Using Charge-based Capacitance Measurement (CBCM) Method for CMOS MEMS Single-axis Accelerometer Readout Circuit |
指導教授: | 陳榮順 |
口試委員: |
李昇憲
陳宗麟 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | CMOS MEMS 、CBCM 、電容感測電路 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用CMOS標準製程製作電容式加速度感測器的製作,由於元件的初始電容值極小(約數百fF),因此電容式加速度計的感測電路通常需具備抵抗雜訊、高靈敏度與高解析度等特性。本研究改良「基於電荷特性之電容量測法」(Charge-based Capacitance Measurement,CBCM)作為加速度計的電容讀取電路,藉由CBCM電路本身可用來量測fF等級的靜態電容且具有高解析度等特性,將其設計成能感測加速度計動態電容的感測電路,提供現有微機電電容感測電路另一途徑。本研究透過國家晶片系統中心所提供的TSMC 0.18 μm 1P6M CMOS製程平台,將單軸電容式加速度計與CBCM電容感測電路整合至單一晶片上,經過後製程處理後可成功將元件懸浮。經由模擬可知,此加速度計的共振頻率為4.3 kHz,且在1 G下具有0.9 fF的電容變化量,搭配所設計的電容感測電路可將1 fF的電容變化量轉換成約35 mV的電壓變化量,可得元件整體靈敏度達31.5 mV/g,感測電路的輸出雜訊則為29.8 μg/√Hz。另外,經由晶片的測試電路可量測到fF等級的電容值,驗證了CBCM電容感測電路的可行性。
[1] P. Scheeper, J. O. Gullov, and M. Kofoed, "A piezoelectric triaxial accelerometer," Journal of Micromechanics and Microengineering, Vol. 6, No. 1, pp. 131-133, 1996.
[2] R. d. Reus, J. O. Gullov, and P. Scheepe, "Fabrication and characterization of a piezoelectric accelerometer," Journal of Micromechanics and Microengineering, Vol. 9, No.2, pp. 123-126, 1999.
[3] L. P. Wang, R. A. Wolf, Jr., Y. Wang, K. K. Deng, L. Zou, R. J. Davis, and S. Trolier-McKinstry, "Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers," Journal of Microelectromechanical Systems, Vol. 12, pp. 433-439, 2003.
[4] S. Huang, X. Li, Z. Song, and Y. Wang, "A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams," Journal of Micromechanics and Microengineering, Vol. 15, No.5, pp. 993-1000, 2005.
[5] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, "A high-performance planar piezoresistive accelerometer," Journal of Microelectromechanical Systems, Vol. 9, pp. 58-66, 2000.
[6] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, and A. Boyer, "Design of a micromachined thermal accelerometer: thermal simulation and experimental results," Microelectronics Journal, Vol. 34, pp. 275-280, 2003.
[7] C.-H. Liu and T. W. Kenny, "A high-precision, wide-bandwidth micromachined tunneling accelerometer," Journal of Microelectromechanical Systems, Vol. 10, pp. 425-433, 2001.
[8] H. K. Rockstad, T. K. Tang, J. K. Reynolds, T. W. Kenny, W. J. Kaiser, and T. B. Gabrielson, "A miniature, high-sensitivity, electron tunneling accelerometer," Sensors and Actuators A: Physical, Vol. 53, pp. 227-231, 1996.
[9] H. Luo, G. Zhang, G. K. Fedder, and L. R. Carley, "A post-CMOS micromachined lateral accelerometer," Journal of Microelectromechanical Systems, Vol. 11, pp. 188-195, 2002.
[10] H. Qu, D. Fang and H. Xie, "A single-crystal silicon 3-axis CMOS-MEMS accelerometer," The 3rd IEEE Conference on Sensors, Oct. 24-27, 2004, Vienna, Austria.
[11] C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, "Implementation of a Monolithic Single Proof-Mass Tri-Axis Accelerometer Using CMOS-MEMS Technique," IEEE Transactions on Electron Devices, Vol. 57, pp. 1670-1679, 2010.
[12] P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, "A low-noise chopper-stabilized differential switched-capacitor filtering technique," IEEE Journal of Solid-State Circuits, Vol. 16, pp. 708-715, 1981.
[13] C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," Proceedings of the IEEE, Vol. 84, pp. 1584-1614, 1996.
[14] C. Junseok, H. Kulah, and K. Najafi, "An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry," Journal of Microelectromechanical Systems, Vol. 13, pp. 628-635, 2004.
[15] M. Schipani, P. Bruschi, G. C. Tripoli, and T. Ungaretti, "A low power CMOS interface circuit for three-axis integrated accelerometers," The 3rd Conference on Ph. D Research in Microelectronics and Electronics (PRIME), July 2-5, 2007, Bordeaux, France.
[16] 國家晶片系統設計中心,"CMOS感測晶片技術",2011。
[17] J. C. Chen, D. Sylvester, and C. Hu, "An on-chip, interconnect capacitance characterization method with sub-femto-farad resolution," The 11th International Conference on Microelectronic Test Structures (ICMTS), March 17-20, 1997, Monterey, California, USA.
[18] D. Sylvester, J. C. Chen, and C. Hu, "Investigation of interconnect capacitance characterization using charge-based capacitance measurement (CBCM) technique and three-dimensional simulation," IEEE Journal of Solid-State Circuits, Vol. 33, pp. 449-453, 1998.
[19] B. W. McGaugh, J. C. Chen, D. Sylvester, and C. Hu, "A simple method for on-chip, sub-femto Farad interconnect capacitance measurement," IEEE Electron Device Letters, Vol. 18, pp. 21-23, 1997.
[20] E. Ghafar-Zadeh and M. Sawan, "A high precision and linearity differential capacitive sensor circuit dedicated to bioparticles detection," The 3rd International IEEE-NEWCAS Conference, June 19-22, 2005, Quebec City, Canada.
[21] E. Ghafar-Zadeh, M. Sawan, V. P. Chodavarapu, and T. Hosseini-Nia, "Bacteria Growth Monitoring Through a Differential CMOS Capacitive Sensor," IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, pp. 232-238, 2010.
[22] M.-H. Tsai, Y.-C. Liu, C.-M. Sun, C.-W. Wang, C.-W. Chen, and W. Fang, "A 400×400 μm2 3-axis CMOS-MEMS accelerometer with vertically integrated fully-differential sensing electrodes," The 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), June 5-9, 2011, Beijing, China.
[23] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, "Comb-drive actuators for large displacements," Journal of Micromechanics and Microengineering, Vol. 6, No. 3, pp. 320-329, 1996.
[24] Z. Gang, X. Huikai, L. E. de Rosset, and G. K. Fedder, "A lateral capacitive CMOS accelerometer with structural curl compensation," The 12th International Conference on Micro Electro Mechanical Systems, Jan. 17-21, 1999, Orlando, Florida, USA.
[25] Z. Gang, "Desing and Simulation of A CMOS-MEMS Accelerometer," 1998. July 10, 2012, from http://www.ece.cmu.edu/~mems/pubs/pdfs/ece/ms_thesis/0049_zhang-1998.pdf
[26] J. M. Tsai and G. K. Fedder, "Mechanical noise-limited CMOS-MEMS accelerometers," The 18th International Conference on Micro Electro Mechanical Systems (MEMS), Jan. 30-Feb. 3, 2005, Miami, Florida, USA.
[27] 李明儒,"靜電式微機電元件電容感測電路之設計、模擬與實現" ,國立清華大學奈米工程與微系統研究所碩士論文,2008。
[28] C.-M. Sun, C.-W. Wang, D.-H. Liu, M. S.-C. Lu, W. Fang, C.-J. Liang, H.-S. Hsieh, and T.-K. Shing, "A Novel CMOS MEMS Accelerometer with Four Sensing Finger Arrays," The 5th IEEE Sensors Conference, Oct. 22-25, 2006, Daegu, South Korea.
[29] 洪英瑞、曾聖翔,"CIC使用手冊 - 0.18 um CMOS微機電製程v.2.3",2011。
[30] 黃鯖珮,"CMOS-MEMS微加速度計與低雜訊電容感測電路之整合與實現",國立清華大學動力機械工程學系碩士論文,2010。