簡易檢索 / 詳目顯示

研究生: 王藝華
Wang, Yi-Hua
論文名稱: 線性Berkson輪廓的監控
On the Monitoring of Linear Berkson Profiles
指導教授: 黃榮臣
Huwang, Long-Cheen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 148
中文關鍵詞: 輪廓監控
外文關鍵詞: Profile monitoring, Berkson
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今許多產品的品質好壞或製程是否穩定可藉由是否滿足某個特定函數或曲線關係來決定,這樣的品質資料型態被稱為輪廓資料。
    在量測校正的領域中有許多輪廓的資料滿足線性迴歸的模型,然而當此線性迴歸模型中的解釋變數設定值與實際值之間的差異大到無法被忽略時,
    則必須將兩者之間的差異納入模型裡,此種考慮解釋變數設定值與實際值不同的模型即為 Berkson 模型。
    因此在本論文中,我們對輪廓資料滿足簡單線性 Berkson 模型時,提出一個完整的統計管制監控及診斷方法。
    我們比較了多種用來偵測此種輪廓資料函數關係的參數與隨機誤差項的變異數是否發生改變的 EWMA 型態管制圖的效率。
    當所使用的管制圖偵測到製程發生失控警訊後,在診斷階段中採用最大化一般概似比的方法來找出製程改變點的估計量,
    並証明在簡單線性 Berkson 模型下,此最大化一般概似比方法所得到的改變點估計量具有良好的收斂性質。
    同時,在得到製程改變點的估計量後,我們也提出對簡單線性 Berkson 模型下參數的個別診斷檢定統計量,
    用以幫助使用者診斷出製程品質關係中的那些參數發生改變,
    進而幫助使用者找出製程可能發生改變的原因。當輪廓資料滿足簡單線性 Berkson 模型時,利用本文所建議的管制圖以及相關的診斷方法,
    由模擬的結果得知不管是在監控製程的改變,製程改變點的估計或是那些參數改變的診斷上都有令人滿意的表現。
    最後利用一個例子來說明實際上如何使用所提出的監控及診斷方法。


    目錄 第一章 緒論…………………………………………………… 1 1.1 前言與文獻探討…………………………………………………………… …1 1.2 動機……………………………………………………………………… ……8 第二章 模型假設……………………………. .………………11 2.1一般線性模型… ……………………………………………………………..11 2.2 Berkson模型………………………………………………………………….12 第三章 監控輪廓資料管制圖………………………………. 17 3.1 KMW管制圖………………………………………………………………… 18 3.2 ZTW 管制圖…………………………………………………………………. 20 3.3 新的輪廓監控管制圖………………………………………………………... 22 3.3-1 SSE管制圖……………………………………………………………. 23 3.3-2 HWYC管制圖………………………………………………………... 24 3.3-3 SJ管制圖………………………………………………………………25 3.3-4 WH管制圖……………………………………………………………. 27 3.3-5 COM管制圖………………………………………………………….. 28 第四章 模擬結果與分析……………………………………. 31 4.1 ARL值的計算……………………… ...………………………….…………..32 4.2 單一參數改變……………………………………………………………….. .35 4.3 兩個參數同時改變…………………………………………………………... 41 第五章 簡單線性Berkson模型的診斷方法……………….. 45 5.1 製程改變點的估計方法…………………………………………………. …..45 5.2 製程參數改變的診斷方法…………………………………………………. ..49 第六章 例子…………………………………………………. 54 第七章 結論與未來研究……………………………………. 58 附錄………………………………………………………… ...62 附錄A……………………………………………………………… ……………..62 附錄B…………………………………………………………………………….. 63 附錄C……………………………………………………………………………. .67 參考文獻………………………………………………….. ….74

    Andrews, D. W. K. (1993). Testing for Parameter Instability and Structural Change with Unknown Change Point. Econometrica 61, pp. 821-856.
    Ash, R. B., and Dol eans-Dade, C. A. (2000). Probability & Measure Theory, 2nd ed. Academic Press.
    Bai, J. (1997). Estimation of a Change Point in Multiple Regression Models. Review of Economics and Statistics 79, pp. 551-563.
    Bai, J., and Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica 66, pp. 47-78.
    Bai, J. (1999). Likelihood Ratio Tests for Multiple Structural Changes. Journal of Econometrics 91, pp. 299-323.
    Bai, J., and Perron, P. (2003). Critical Values for Multiple Structural Change Tests. Econometrics Journal 6, pp. 72-78.
    Berkson, J. (1950). Are There Two Regressions?. Journal of the American Statistical Association 45, pp. 164-180.
    Box, G. E. P. (1954). Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems: Effect on Inequality of Variance in One-Way Classification. Annals of Mathematical Statistics 25, pp. 290-302.
    Chen, G., Cheng, S. W., and Xie, H. (2001). Monitoring Process Mean and Variability with One EWMA Chart. Journal of Quality Technology 33, pp 223-233.
    Crowder, S. V. (1989). Design of Exponentially Weighted Moving Average Schemes. Journal of Quality Technology 21, pp. 135-162.
    Crowder, S. V., and Hamilton, M. (1992). An EWMA for Monitoring a Process Standard Deviation. Journal of Quality Technology 24, pp. 12-21.
    Csorgo, M., and Horvath, L. (1997). Limit Theorems in Change Point Analysis. Wiley Series in Probability and Statistics, New York, John Wiley & Sons, Inc.
    Ding, Y., Zeng, L., and Zhou, S. (2006). Phase I Analysis for Monitoring Nonlinear Profiles in Manufacturing Processes. Journal of Quality Technology 38, pp. 199-216.
    Gupta, S., Montgomery, D. C., and Woodall, W. H. (2006). Performance Evaluation of Two Methods for Online Monitoring of Linear Calibration Profiles. International Journal of Production Research 44, pp. 1927-1942.
    Hawkins, D. M. (1981). A Cusum for a Scale Parameter. Journal of Quality Technology 13, pp. 228-235.
    Hawkins, D. M. (1993). Cumulative Sum Control Charting: An Underutilized SPC Tool. Quality Engineering 5, pp. 463-477.
    Hinkle, L. D. (1991). MFC Accuracy: Is Simple Gas Correction Enough?. Semiconductor International, pp. 68-69.
    Huwang, L., Wang, T. Y., Yeh, A. B., and Chen, Z. J. (2009). On the Exponentially Weighted Moving Variance. Naval Research Logistics 56, pp. 659-668.
    Jensen, W. A., Birch, J. B., andWoodall, W. H. (2008). Monitoring Correlation within Linear Profiles Using Mixed Models. Journal of Quality Technology 40, pp. 167-183.
    Jensen, W. A., and Birch, J. B. (2009). Profile Monitoring via
    Nonlinear Mixed Model. Journal of Quality Technology 41, pp.18-34.
    Kang, L., and Albin, S. L. (2000). On-Line Monitoring When the Process Yields a Linear Profile. Journal of Quality Technology 32, 418-426.
    Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). On the
    Monitoring of Linear Profiles. Journal of Quality Technology 35, pp. 317-328.
    Kramer, H., and Schmid, W. (1997). EWMA Charts for Multivariate Time Series. Sequential Analysis 16, pp. 131-154.
    Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. John Wiley & Sons, New York, NY.
    Lehmann, E. L., and Casella, G. (1998). Theory of Point Estimation, 2nd ed. Springer, New York.
    Liu, J., Wu, S., and Zidek, J. V. (1997). On Segmented Multivariate Regressions . Statistica Sinica 7, pp. 497-525.
    Lowry, C. A., and Montgomery, D. C. (1995). A Review of Multivariate Control Charts. IIE Transactions 27, pp. 800-810.
    Lowry, C. A., Woodall, W. H., Champ, C. W., and Rigdon, S. E.(1992). A Multivariate ExponentiallyWeighted Moving Average Control Chart. Technometrics 34, pp. 46-53.
    Lucus, J. M. (1976). The Design and Use of V-Mask Control Schemes. Journal of Quality Technology 8, pp. 1-12.
    Lucus, J. M., and Saccucci, M. S. (1990). Exponentially Weighted Moving Average Schemes: Property and Enhancements. Technometrics 32, pp. 1-12.
    MacGregor, J. F., and Harris, T. J. (1993). The Exponentially Weighted Moving Variance. Journal of Quality Technology 25, pp. 106-118.
    Mahmoud, M. A., Parker, P. A., Woodall, W. H., and Hawkins, D. M. (2007). A Change Point Method for Linear Profile Data.
    Quality and Reliability Engineering International 23, pp. 247-268.
    Mahmoud, M. A., and Woodall, W. H. (2004). Phase I Monitoring of Linear Profiles with Calibration Application. Technometrics 46, pp. 380-391.
    Mestek, O., Pavlik, J., and Suchanek, M. (1994). Multivariate Control Charts: Control Charts for Calibration Curves. Journal of Analytical Chemistry 350, pp. 344-351.
    Montgomery, D. C. (2009). Introduction to Statistical Quality Control, 6th ed. John Wiley & Sons, Inc.
    Page, E. S. (1954). Continuous Inspection Schemes. Biometrics 41, pp. 100-115.
    Page, E. S. (1961). Cumulative Sum Control Charts. Technometrics 3, pp. 1-9.
    Pignatiello, J. J. Jr., and Runger, G. C. (1990). Comparisons of Multivariate CUSUM Charts. Journal of Quality Technology 22, pp. 173-186.
    Pignatiello, J. J. Jr., and Samuel, T. R. (2001). Estimation of the Change Point of a Normal Process Mean in SPC Applications. Journal of Quality Technology 33, pp. 82-95.
    Qu, Z., and Perron, P. (2007). Estimating and Testing Structural Changes in Multivariate Regressions. Econometrica 75, pp. 459-502.
    Quesenberry, C. P. (1995). On Properties of Q Charts for Variables.Journal of Quality Technology 27, pp. 184-203.
    Reynolds, Jr. M. R., and Kim, K. (2005). Multivariate Monitoring of the Process Mean Vector Using Sequential Sampling. Journal of Quality Technology 37, pp. 149-162.
    Roberts, S. W. (1959). Control Charts Based on Geometric Moving Averages. Technometrics 1, pp. 234-250.
    Rosner, B., Spiegelman, D., and Willett, W. C. (1990). Correction of Logistic Regression Relative Risk Estimates and Confidence Intervals for Measurement Error: the Case of Multiple Covariates Measured with Error. American Journal of Epidemiology 132, pp. 734-745.
    Rosner, B., Willett, W. C., and Spiegelman, D. (1989). Correction of Logistic Regression Relative Risk Estimates and Confidence Intervals for Systematic within-Person Measurement Error. Statistics in Medicine 8, pp. 1051-1070.
    Runger, G. C. (2004). Multivariate Extensions to Cumulative Sum Control Charts. Quality and Reliability Engineering International 20, pp. 587-606.
    Schafera, W. D., and Gilbertb, E. S. (2006). Some Statistical Implications of Dose Uncertainty in Radiation Dose-Response Analyses. Radiation Research 166, pp. 303-312.
    Shewhart, W. A. (1924). Some Applications of Statistical Methods to the Analysis of Physical and Engineering Data. Bell System Technical Journal 3, pp. 43-87.
    Shiau, H. J., Huang, H., Lin, S., and Tsai, M. (2009). Monitoring Nonlinear Profiles with Random Effects by Nonparametric Regression. Communications in Statistics-Theory and Methods 38, pp. 1664-1679.
    Sheri, D. (1995). Diagnostic Procedures Facilitate the Solving of Gas Flow Problems. Solid State Technology 38, pp. 63-69.
    Shu, L. and Jiang, W. (2008). A New EWMA Chart for Monitoring Process Dispersion. Journal of Quality Technology 40, pp. 319-331.
    Soleimani, P., Noorossana, R., and Amiri, A. (2009). Simple Linear Profiles Monitoring in the Presence of Within Profile Autocorrelation. Computers and Industrial Engineering 57, pp. 1015-1021.
    Stover, F. S., and Brill, R. V. (1998). Statistical Quality Control Applied to Ionchromatography Calibrations. Journal of Chromatography A 804, pp. 37-43.
    Tosteson, T., Stefanski, L. A. and Schafer D. W. (1989). A Measurement Error Model for Binary and Ordinal Regression. Statistics in Medicine 8, pp. 1139-1147.
    Walker E., and Wright, S. (2002). Comparing Curves Using Additive Models. Journal of Quality Technology 34, pp. 118-129.
    Wang, K., and Tsung, F. (2005). Using Profile Monitoring Techniques for a Data-Rich Environment with Huge Sample Sizes. Quality and Reliability Engineering International 21, pp. 677-688.
    Wieerda, S. J. (1994). Multivariate Statistical Process Control-Recent Results and Directions for Future Research. Statistica Neerlandica 48, pp. 147-168.
    Williams, J. D., Woodall, W. H., and Birch, J. B. (2007). Statistical Monitoring of Nonlinear Product and Process Quality Profiles.
    Quality and Reliability Engineering International 23, pp. 925-941.
    Woodall, W. H. (2007). Current Research in Profile Monitoring.
    Revista Producao 17, pp. 420-425.
    Woodall, W. H., and Adams, B. M. (1993). The Statistical Design of CUSUM Charts. Quality Engineering 5, pp. 559-570.
    Woodall, W. H., and Ncube, M. M. (1985). Multivariate CUSUM Quality Control Procedures. Technometrics 27, pp. 285-292.
    Woodall, W. H., Spitzner, D. J., Montgomery, D. C., and Gupta, S.(2004). Using Control Charts to Monitor Process and Product Quality Profiles. Journal of Quality Technology 36, pp. 309-320.
    Yeh, A. B., Huwang, L., and Li, Y. (2009). Profile Monitoring for a Binary Response. IIE Transactions 41, pp. 931-941.
    Zou, C., Tsung, F., and Wang, Z. (2007). Monitoring General Linear Profiles Using Multivariate Exponentially Weighted Moving Average Schemes. Technometrics 49, pp. 395-408.
    Zou, C., Tsung, F., andWang, Z. (2008). Monitoring Profiles Based on Nonparametric Regression Methods. Technometrics 50, pp. 512-526.
    Zou, C., Zhang, Y., and Wang, Z. (2006). Control Chart Based on Change-Point Model for Monitoring Linear Profiles. IIE Transactions 38, pp. 1093-1103.
    Zou, C., Zhou, C., Wang, X. and Tsung, F. (2007). A Self-Starting Control Chart for Linear Profiles. Journal of Quality Technology 39, pp. 364-375.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE