簡易檢索 / 詳目顯示

研究生: 高公鍇
Kao, Kung-Kai
論文名稱: 氧化鉿薄膜之電阻式記憶體轉態特性探討與研究
The Study on HfO2 Resistive Random Access Memory
指導教授: 葉鳳生
Yeh, Fon-Shan
張鼎張
Chang, Ting-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 91
中文關鍵詞: 電阻式記憶體
外文關鍵詞: RRAM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於非揮發性記憶體在可攜式產品中的重要地位以及目前所遇到的瓶頸,研發新世代的記憶體已經成為刻不容緩的目標.電阻式記憶體無論是在操作速度.功率消耗.面積大小.以及製程整合上都明顯優於其它記憶體,因此本研究著重於電阻式記憶體.在眾多電阻式記憶體材料中,我們選用二氧化鉿(HfO2)以及上電極Ti下電極TiN來做為我們的研究材料,其原因為二氧化鉿可以直接進行製程整合無虛額外的污染考量,上電極選用Ti是因為在CMOS邏輯閘製程的多層島連線中,Ti已經廣泛的被當作吸附層再使用,而下電極選用TiN的原因也是因為在多層島連線中,TiN也已經廣泛的被當作阻障層使用,所以可以減少製程整合上的問題.而在本研究中大致上可以分成氧化鉿RRAM的基本特性探討以及單一原件多重位元儲存的可能性,並在最後找出可能的轉態時間與功率消耗.並且利用變溫的技巧成功萃取出不同電壓下的缺陷深度,以及不同限流下的導電行為.這對以後電阻式記憶體與邏輯閘結合上有重大的幫助.


    In recent year, non-volatile memory has become more and more important in our life. However, as the CMOS scaling goes on, we need faster, smaller, and less power consume’s memory to use in portable merchandises. Under this condition, resistive switching random access memory (RRAM) has strong potential among next generation non-volatile memory candidates. Hence, our study will focus on RRAM and its applications.Among so many RRAM materials, we decide using HfO2 to be our dielectric layer and Ti as top electrode TiN as bottom electrode. It is because HfO2 has been broadly used in COMS process and Ti, TiN also wieldy used in via as adhesion layer and stopping layer. So our material can directly compatible with CMOS process without any other contaminations issue.Our study can be divided to two parts: one is basic HfO2 RRAM characteristic the other is studying the possibility of HfO2 RRAM application in multi-level operations. Finally, by using changetemperature technique, we can abstract the defect levels , erase/programming times ,power consumptions and device operation behavior under different compliance current. Hoping our study will give other researchers help and contributions to RRAM.

    Contents CHINESE ABSTRACT-----------------------------------------------------------I ABSTRACT----------------------------------------------------------------------III ACKNOWLEDGEMENT------------------------------------------------------IV CONTENTS-----------------------------------------------------------------------V FIGURE CAPTIONS---------------------------------------------------------VIII Chapter1 Introduction 1.1 Introduction ----------------------------------------------------------------------------------1 1.2 Introduction of advanced memory 1.2.1 Flash------------------------------------------------------------------------------------3 1.2.2 MRAM (Magnetic RAM) -----------------------------------------------------------4 1.2.3 PCRAM (Phase change RAM) -----------------------------------------------------5 1.2.4 RRAM (resistive RRAM) -----------------------------------------------------------6 1.3 Motivation------------------------------------------------------------------------------------7 Chapter2 The Mechanism of RRAM 2.1 Ohmic Conduction --------------------------------------------------------------------------9 2.2 Space Charge Limited Current-------------------------------------------------------------9 2.3 Schottky Emission -------------------------------------------------------------------------11 VI 2.4 Frenkel-Poole Emission-------------------------------------------------------------------11 2.5 Tunneling------------------------------------------------------------------------------------12 2.6 Models of Resistive Switching Mechanisms-------------------------------------------13 2.6.1 Filament-Type Model---------------------------------------------------------------13 2.6.2 Schottky Barrier Model-------------------------------------------------------------14 2.6.3 Joule-Heating ------------------------------------------------------------------------15 2.6.4 Mott-Transition----------------------------------------------------------------------16 2.6.5 Ionic Effect: Solid-State Electrode (SSE) ---------------------------------------18 2.6.6 Ionic Effect: Oxygen Vacancy Migration----------------------------------------19 Chapter3 Experiment 3.1 Basic Study of HfO2 Material------------------------------------------------------------21 3.2 Sample Preparation ------------------------------------------------------------------------22 3.3 I-V Characteristics-------------------------------------------------------------------------23 3.4 Summary------------------------------------------------------------------------------------39 Chapter 4 Multi-Level Application 4.1 Multi-Level: Change V stop ---------------------------------------------------------------30 4.2 Multi-Level: change I limit ----------------------------------------------------------------33 4.3 Summary------------------------------------------------------------------------------------36 Chapter5 Transition Region and Stress Effect on LRS VII 5.1 Transition Region ------------------------------------------------------------------------38 5.2 CCS Stress --------------------------------------------------------------------------------39 5.3 Summary-----------------------------------------------------------------------------------41 Chapter 6 Conclusion Conclusion-------------------------------------------------------------------------------------42 Reference

    References
    [1] D. Kahng and S. M. Sze, “A Floating Gate and Its application to Memory
    Devises,” Bell Syst. Tech. J., 46, 1283 (1967).
    [2] “International Technology Roadmap for Semiconductors, 2007 update” at
    http://public.itrs.net/Files/2007Update/Home.pdf.
    [3] J. C. Bruyere and B. K. Chakraverty, Appl. Phys. Lett. 16, 40(1970).
    [4] Zhuang, W.W. et al“ Novel1 Colossal Magnetoresistive Thin Film Nonvolatile
    Resistance Random AccessMemory (RRAM) ” sharp IEDM 2002.
    [5] Peiqi Xuan, Min She, Bruce Harteneck, Alex Liddle, Jefkey Bokor, and Tsu-Jae
    King, “FinFET SONOS Flash Memory for Embedded Applications”, IEEE
    IEDM, p. 609-612 (2003).
    [6] 張文淵, 以LaNiO3底電極開發(Pr,Ca)MnO3非揮發性電阻式記憶體特性
    之研究. 清華大學, 碩士論文, 2006.
    [7] H. Y. Lee et al, “ Low Power and High Speed Bipolar Switching with A Thin
    Reactive Ti Buffer Layer in Robust HfO2 Based RRAM” ITRI IEEE IEDM 2008.
    [8]張文淵, 以LaNiO3底電極開發(Pr,Ca)MnO3非揮發性電阻式記憶體特性
    之研究. 清華大學, 碩士論文, 2006.
    [9]余昭倫, 縱觀新世代記憶體-相變化記憶(PCRAM). Digitimes 技術 IT,
    2006.
    [10] Gerhard Muller, T.H., Micheal Kund, Gill Yong Lee, Nicolas Nagel, and
    Recai Sezi, Status and outlook of emerging nonvolatole memory
    technologies. IEEE, 2004.
    [11] Liu, S.Q., N.J. Wu, and A. Ignatiev, Electric-pulse-induced reversible
    resistance change effect in magnetoresistive films. Applied Physics
    Letters, 2000. 76(19): p. 2749-2751.
    [12] Sawa, A., et al., Hysteretic current-voltage characteristics and
    87
    resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface.
    Applied Physics Letters, 2004. 85(18): p. 4073-4075.
    [13] Beck, A., et al., Reproducible switching effect in thin oxide films for
    memory applications. Applied Physics Letters, 2000. 77(1): p. 139-141.
    [14] Ma, L.P., et al., Organic bistable light-emitting devices (vol 80, pg 362,
    2002). Applied Physics Letters, 2002. 80(16): p. 3018-3018.
    [15] Ma, L.P., J. Liu, and Y. Yang, Organic electrical bistable devices and
    rewritable memory cells. Applied Physics Letters, 2002. 80(16): p.
    2997-2999.
    [16] Seo, S., et al., Reproducible resistance switching in polycrystalline NiO
    films. Applied Physics Letters, 2004. 85(23): p. 5655-5657.
    [17] I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, H.
    104 S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, Highly Scalable
    Non-volatile Resistive Memory using Simple Binary Oxide Driven by
    Asymmetric Unipolar Voltage Pulses. IEDM Tech. Dig., 2004.
    [18] Chang, W.Y., et al., Unipolar resistive switching characteristics of ZnO
    thin films for nonvolatile memory applications. Applied Physics Letters,
    2008. 92(2): p. 3.
    [19] Kyung Min Kim, Byung Joon Choi, Yong Cheol Shin, Seol Choi, and Cheol
    Seong Hwang, “Anode-interface localized filamentary mechanism in resistive
    switching of TiO2 thin films,” Appl. Phys. Lett., vol. 91, p. 012907, Jul. 2007.
    [20] 施敏 半導體元件物理.
    [21] Akihito Sawa, “Resistive Switching in Transition Metal oxides,” Materialstoday,
    Vol. 11, 2008, pp. 28-36.
    [22] J. E. Ralph, and J. M. Woodcock, “A new filamentary model for voltage formed
    amorphous oxide films,” J. Non-Cryst. Solids, vol. 7, pp. 236-250, Apr. 1972.
    [23] I. Emmer, “Conducting filaments and voltage-controlled negative resistance in
    88
    Al-Al2O3-Au structures with amorphous dielectric,” Thin Solid Films, vol. 20, pp.
    43-52, Jan. 1974.
    [24] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi, Jin-Shi Zhao,
    and Cheol Seong Hwang, “Identification of a determining parameter for resistive
    switching TiO2 thin films,” Appl. Phys. Lett., vol. 86, p. 262907, Jun. 2005.
    [25] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi, Jin-Shi Zhao,
    and Cheol Seong Hwang, “Identification of a determining parameter for
    resistive switching TiO2 thin films,” Appl. Phys. Lett., vol. 86, p. 262907, Jun.
    2005.
    [26] Kyung Min Kim, Byung Joon Choi, and Cheol Seong Hwang, “Localized
    switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin
    films,” Appl. Phys. Lett., vol. 90, p. 242906, Jun. 2007.
    [27] An Chen, Sameer Haddad, Yi-Ching (Jean) Wu, Tzu-Ning Fang, Zhida Lan,
    Steven Avanzino, Suzette Pangrle, Matthew Buynoski, Manuj Rathor, Wei
    (Daisy) Cai, Nick Tripsas, Colin Bill, Michael VanBuskirk, and Masao Taguchi,
    “Non-Volatile Resistive Switching for Advanced Memory Applications,” Tech.
    Dig. – Int. Electron Devices Meet. pp 746-749 Dec. 2005.
    [28] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current-voltage
    characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3
    interface,” Appl. Phys. Lett., vol. 85, pp. 4073-4075, Nov. 2004.
    [29] M. J. Rozenberg, I. H. Inoue, M. J. Sánchez, “Strong electron correlation effects
    in nonvolatile electronic memory devices” Appl. Phys. Lett., vol. 88, p. 033510,
    Jan. 2006.
    [30] M. J. Rozenberg, I. H. Inoue, and M. J. Sa´nchez, “Nonvolatile Memory with
    Multilevel Switching: A Basic Model,” Phys. Rev. Lett,” vol. 92, 178302-1,April
    2004.
    [31] M. J. Sánchez, M. J. Rozenberg, and I. H. Inoue, “A mechanism for unipolar
    resistance switching in oxide nonvolatile memory devices,” Appl. Phys. Lett.,
    vol. 91, p. 252101, Dec. 2006.
    89
    [32] L. Courtade, Ch. Turquat, Ch. Muller, J.G. Lisoni, L. Goux, D.J. Wouters, D.
    Goguenheim, P. Roussel, L. Ortega, “Oxidation kinetics of Ni metallic films:
    Formation of NiO-based resistive switching structures,” Thin Solid Films 516
    (2008) 4083– 4092.
    [33] Dongsoo Lee, Dong-jun Seong, Hye jung Choi, Inhwa Jo, R. Dong, W. Xiang,
    Seokjoon Oh, Myeongbum Pyun, Sun-ok Seo, Seongho Heo, Minseok Jo,
    Dae-Kyu Hwang, H. K. Park, M. Chang, M. Hasan, and Hyunsang Hwang,
    “Excellent uniformity and reproducible resistance switching characteristics of
    doped binary metal oxides for non-volatile resistance memory applications,”
    Tech. Dig. – Int. Electron Devices Meet., 2006, pp. 1-4.
    [34] Yin-Pin Yang, and Tseung-Yuen Tseng, “Electronic defect and trap-related
    current of (Ba0.4Sr0.6)TiO3 thin films,” J. Appl. Phys., vol. 81, pp. 6762-6766,
    May. 1997.
    [35] Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-His Lin, and
    Tseung-Yuen Tseng, “Resistive switching mechanisms of V-doped SrZrO3
    memory films,” IEEE Electron Device Lett., vol.27, pp. 725-727, 2006.
    [36] Jae-Wan Park, Kyooho Jung, Min Kyu Yang, and Jeon-Kook Lee, Dal-Young
    Kim, and Jong-Wan Park, “Resistive switching characteristics and set-voltage
    dependence of low-resistance state in sputter-deposited SrZrO3:Cr memory
    films,” J. Appl. Phys., vol. 99, p. 124102, Jun. 2006.
    [37] Markus Janousch, Gerhard Ingmar Meijer, Urs Staub, Bernard Delley, Siegfried
    F. Karg, and Björn Pererik Andreasson, “Role of oxygen vacancies in Cr-doped
    SrTiO3 for resistance-change memory,” Adv. Mater., vol. 19, pp. 2232-2235, Sep.
    2007.
    [38] Kyung Min Kim, Byung Joon Choi, Doo Seok Jeong, Cheol Seong Hwang, and
    Seungwu Han, “Influence of carrier injection on resistive switching of TiO2 thin
    films with Pt electrodes,” Appl. Phys. Lett., vol. 89, p. 162912, Oct. 2006.
    [39] John R. Jameson, Yoshiaki Fukuzumi, Zheng Wang, Peter Griffin, Koji Tsunoda,
    G. Ingmar Meijer, and Yoshio Nishi, “Field-programmable rectification in rutile
    TiO2 crystals,” Appl. Phys. Lett., vol. 91, p. 112101, Sep. 2007.
    [40] Chih-Yang Lin, Chen-Yu Wu, Chung-Yi Wu, Chenming Hu, and Tseung-Yuen
    90
    Tseng, “Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of
    The Electrochemical Society, 154 9 G189-G192 2007.
    [41] Heng Yuan Lee, Pang Shiu Chen, Tai Yuan Wu, Ching Chiun Wang, Pei Jer
    Tzeng, Cha Hsin Lin, Frederick Chen, Ming-Jinn Tsai, and Chenhsin Lien,
    “Electrical evidence of unstable anodic interface in Ru/HfOx /TiN unipolar
    resistive memory,” Appl. Phys. Lett., vol. 92, p. 142911, Apr. 2008.
    [42] Masayuki Fujimoto, Hiroshi Koyama, Masashi Konagai, Yasunari Hosoi,
    Kazuya Ishihara, Shigeo Ohnishi, and Nobuyoshi Awaya, “TiO2 anatase
    nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,”
    Appl. Phys. Lett., vol. 89, p. 223509, Nov. 2006.
    [43] L. F. Liu, H. Tang, Y. Wang, D. Y. Tian, X. Y. Liu, X. Zhang, R. Q. Han, and J.
    F.Kang, “Reversible resistive switching of Gd-doped TiO2 thin films for
    nonvolatile memory applications,” Inf. Conf. Solid-State and Integrated Circuit
    Technology, 2006, pp. 833-835.
    [44] Kyng Min Kim, Byung Joon Choi, Bon Wook Koo, Seol Choi, Doo Seok Jeong,
    and Cheol Seong Hwang, “Resistive switching in Pt/Al2O3/TiO2/Ru
    stackedstructures,” Electrochem. Solid-State Lett., vol. 9, pp. G343-G346, Sep. 2006.
    [45] Kyung Min Kim, Byung Joon Choi, and Cheol Seong Hwang, “Localized
    switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin
    films,” Appl. Phys. Lett., vol. 90, p. 242906, Jun. 2007.
    [46] Kyng Min Kim, Byung Joon Choi, Bon Wook Koo, Seol Choi, Doo Seok Jeong,
    and Cheol Seong Hwang, “Resistive switching in Pt/Al2O3/TiO2/Ru
    stackedstructures,” Electrochem. Solid-State Lett., vol. 9, pp. G343-G346, Sep. 2006.
    [47] Kyung Min Kim, Byung Joon Choi, and Cheol Seong Hwang, “Localized
    switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin
    films,” Appl. Phys. Lett., vol. 90, p. 242906, Jun. 2007.
    [48] Markus Janousch, Gerhard Ingmar Meijer, Urs Staub, Bernard Delley, Siegfried
    F. Karg, and Björn Pererik Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Adv. Mater., vol. 19, pp. 2232-2235, Sep.2007.91[49] http://en.wikipedia.org/wiki.
    [50] 黃志文, 利用熱氧化法製備氧化銅薄膜於電阻式轉態記憶體之研究. 交通大學, 碩士論文, 2008.
    [51] 王韋婷, 應用在RRAM 記憶體之氧化鋅薄膜及其電極材料開發. 清華大學,碩士論文, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE