簡易檢索 / 詳目顯示

研究生: 許奕鈞
Hsu, Yi-Chun
論文名稱: 感應馬達驅動之原動機模擬器
AN INDUCTION MOTOR DRIVEN PRIME MOVER EMULATOR
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 陳盛基
Chen, Seng-Chi
曾萬存
Tseng, Wan-Tsun
鐘太郎
Zhong, Tai-Lang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 104
中文關鍵詞: 原動機風渦輪機模擬器感應馬達磁場導向內置磁石式永磁同步發電機維也納切換式整流器最大功率追蹤
外文關鍵詞: prime mover, wind turbine, emulator, induction motor, field-orientation, IPMSG, Vienna SMR, maximum power point tracking
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在開發一由間接磁場導向感應馬達驅動之原動機模擬器。此感應馬達驅動系統可操控成速度模式之傳統原動機,或轉矩-速度模式之風渦輪機。在此兩模式下,變頻供電感應馬達驅動系統分別操作於速度控制模式以及直接轉矩控制模式。因此,為獲得較佳之間接磁場導向感應馬達驅動特性,本文提出改善之感應馬達參數估測技巧。實驗結果顯示,不同風速下之轉矩-速度曲線可被忠實呈現。
    為從事所建原動機模擬器之加載測試,建立一具後接三相維也納升壓切換式整流器之內置磁石式永磁同步發電機。渦輪機接收機械能,並建立四百伏特之直流微電網共同匯流排。同時施行換相移位調適,以得內置磁石式永磁同步發電機之最佳產生功率。另外,亦採擾動觀察法從事風渦輪機模擬器驅動發電機之最大功率追蹤控制。而維也納切換式整流器之故障容錯操作,亦從事之。
    為使所開發渦輪機模擬器可從電網供電且具良好之入電品質,構建一入電端之三相升壓型維也納切換式整流器。最後以一些實測結果,詳予評定所建切換式整流器供電風渦輪機模擬器之總體操控效能。
    關鍵詞:原動機、風渦輪機、模擬器、感應馬達、磁場導向、內置磁石式永磁同步發電機、維也納切換式整流器、最大功率追蹤。


    This thesis develops a prime mover emulator driven by an indirect field-oriented (IFO) induction motor (IM). The IM drive can be operated as a conventional prime mover in speed mode or a wind turbine in torque-speed mode. For these two modes, the inverter-fed IM drive is respectively operated under speed control mode and direct torque control (DTC) mode. To let the IFO IM drive possess satisfactory operating characteristics, the improved induction motor parameter estimation procedure is proposed. In the developed wind turbine emulator, experimental verification shows that different wind turbine torque-speed curves under various speeds can be faithfully emulated.
    To conduct the loading test of the established prime mover emulator, an interior permanent-magnet synchronous generator (IPMSG) followed by a three-phase Vienna boost switch-mode rectifier (SMR) is constructed. It receives mechanical driven power from the turbine and establishes a 400V DC-link for DC micro-grid. The commutation tuning to optimize the IPMSG developed power is arranged. The maximum power point tracking (MPPT) of the wind turbine emulator driven IPMSG is achieved using the perturbation and observation (P&O) approach, and the fault-tolerant operation of the Vienna SMR are also conducted.
    Besides, in order to let the developed turbine emulator be powered from the utility grid with good power quality, a source side three-phase Vienna boost SMR is also established. The whole SMR-fed wind turbine emulator driven IPMSG system is then completely evaluated.
    Key words: Prime mover, wind turbine, emulator, induction motor, field-orientation, IPMSG, Vienna SMR, maximum power point tracking.

    LIST OF CONTENTS ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES vii LIST OF TABLES xiii LIST OF SYMBOLS xvi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 INTRODUCTION TO WIND GENERATOR AND THE EMPLOYED ELECTRIC MACHIENS 5 2.1 Introduction 5 2.2 Micro-grid Systems 5 2.3 Wind Generator Systems 6 2.3.1 Wind Generators 6 2.3.2 Introduction to Wind Turbine 7 2.4 Induction Motors 10 2.4.1 Structure 10 2.4.2 Indirect Field-orientation 11 2.4.3 Key Issues of an IFO IM Drive 12 2.5 Permanent Magnet Synchronous Machine 18 2.5.1 Structure 18 2.5.2 Governing Equations 19 2.5.3 Estimation of Equivalent Circuit Parameters 21 2.5.4 Key Issues of a Wind PMSG 23 CHAPTER 3 INDUCTION MOTOR DRIVEN PRIME MOVER EMULATOR 25 3.1 Introduction 25 3.2 The Developed IFO IM Drive 25 3.2.1 System Configuration 25 3.2.2 The Employed IM and IPMSG 27 3.2.3 Voltage-source Inverter 29 3.2.4 Sensing and Interfacing Circuits 29 3.2.5 DSP TMS320F28335 31 3.2.6 Control Schemes 32 3.3 Conventional Turbine Emulator 33 3.3.1 IM Drive Starting Characteristics 34 3.3.2 IM Drive Speed Dynamic Responses 35 3.4 Wind Turbine Emulator 37 3.4.1 Control System Configuration 37 3.4.2 Observed Torque Controller 37 3.4.3 Mathematical Modeling of Wind Turbine 39 3.4.4 Experimental Results of the Developed IFO IM Driven Wind Turbine Emulator 42 CHAPTER 4 PERMANENT-MAGNET SYNCHRONOUS GENERATOR FOLLOWED VIENNA SMR 44 4.1 Introduction 44 4.2 Development of a Wind IPMSG Followed by a Vienna SMR 44 4.2.1 System Configuration ........................ 44 4.2.2 Power Circuits ................................. 46 4.2.3 Circuit Operation ................................. 46 4.2.4 Single-phase Equivalent Circuit 49 4.2.5 Circuit Components Design 50 4.2.6 Simulated Results 52 4.2.7 Current Control Scheme 53 4.2.8 Voltage Control Scheme 53 4.3 Experimental Results of the Wind Turbine Emulator Driven IPMSG 56 4.3.1 Steady-state Characteristics 56 4.3.2 Measured Hall Signal and Speed 59 4.3.3 Effects of Winding Inductance 59 4.3.4 Dynamic Responses 61 4.4 Maximum Power Point Tracking Control of the Wind Turbine Emulator Driven IPMSG 62 4.4.1 Control Scheme 62 4.4.2 Maximum Power Point Tracking Control Algorithm 63 4.4.3 Experimental Evaluation 66 4.4.4 Dynamic Characteristics 67 4.5 Commutation Shifting of IPMSG 69 4.5.1 Basic Commutation Shifting 69 4.5.2 Intuitive Commutation Shifting 69 4.5.3 Experimental Results of Commutation Shifting 71 4.6 Fault-tolerant Operation 72 4.6.1 System Configuration and Control Scheme 72 4.6.2 Circuit Operation 73 4.6.3 Simulated Results 75 4.6.4 Experimental Results 76 CHAPTER 5 VIENNA SMR POWERED INDUCTION MOTOR DRIVEN WIND TURBINE EMULATOR 78 5.1 Introduction 78 5.2 Source-side Vienna SMR 78 5.2.1 System Configuration 78 5.2.2 Circuit Component Design 80 5.2.3 Control Schemes 81 5.2.4 Simulation Results 82 5.2.5 Measured Results 83 5.3 Vienna SMR-fed IFO IM Driven Turbine Emulator 86 5.4 Effects of Commutation Shifting 87 5.4.1 Control Scheme 87 5.4.2 Efficiency Estimation under Various Commutation Angles 87 CHAPTER 6 CONCLUSIONS 97 REFERENCES 98

    REFERENCES
    A. Microgrids and Wind Generators
    [1] R. H. Lasseter and P. Piagi, “Microgrid: A conceptual solution,” in Proc. IEEE PESC, vol. 6, pp. 4285-4291, 2004.
    [2] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, 2011.
    [3] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, and G. A. Jiménez-Estévez, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, 2014.
    [4] J. G. de Matos, F. S. F. e Silva, and L. A. d. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
    [5] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
    [6] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids- Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
    [7] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
    [8] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent magnet synchronous generator-based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011.
    [9] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 1, no. 3, pp. 139-152, 2013.
    [10] N. A. Orlando, M. Liserre, R. A. Mastromauro, and A. Dell'Aquila, “A survey of control issues in PMSG-based small wind-turbine systems,” IEEE Trans. Ind. Inform., vol. 7, no. 4, pp. 529-539, 2013.
    [11] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015.
    B. Switch-Mode Rectifiers
    [12] G. K. Andersen and F. Blaabjerg, “Current programmed control of a single-phase two-switch buck-boost power factor correction circuit,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 263-271, 2006.
    [13] R. Wang, F. Wang, D. Boroyevich, R. Burgos, R. Lai, P. Ning, and K. Rajashekara, “A high power density single-phase PWM rectifier with active ripple energy storage,” IEEE Trans. Ind. Power Electron., vol. 53, no. 1, pp. 263-271, 2006.
    [14] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3485-3499, July 2011.
    [15] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
    [16] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
    [17] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp. 1619-1626.
    [18] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2009.
    [19] J. W. Kolar, U. Drofenik, and P. K. Jain, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, vol. 2, pp. 1329-1336, 1996.
    [20] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “Equivalence of SVM and carrier-based PWM in three-phase/wire/level Vienna rectifier and capability of unbalanced-load control,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 20-28, 2004.
    [21] A. Rajaei, M. Mohamadian, and A. Y. Varjani, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013.
    C. Maximum Power Point Tracking Method
    [22] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005.
    [23] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, “Optimized maximum power point tracker for fast-changing environmental conditions,” IEEE Trans. Ind. Electron., vol. 55, pp. 2629-2637, 2008.
    [24] K. A. Abdelsalam, M. A. Massoud, S. Ahmed, and N. P. Enjeti, “High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010-1021, 2010.
    [25] Y. Xia, K. H. Ahmed, and B.W. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609-3620, 2011.
    [26] Z. M. Dalala, Z. U. Zahid, W. S. Yu, and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013.
    [27] J. Hussain and M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 31, pp. 697-705, 2016.

    D. Wind Turbine Emulators
    [28] J. M. Nye, J. G. de la Bat, M. A. Khan, and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065.
    [29] H. Voltolini, H. M. Granza, J. Ivanqui, and R. Carlson, “Modeling and simulation of the Wind Turbine Emulator using induction motor driven by torque control inverter,” in Proc. IEEE/IAS Ind. Appl., pp. 1-6, 2012.
    [30] G. Henz, G. Koch, C. M. Franchi, and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. IEEE COBEP, 2013, pp. 737-742.
    [31] D. Llano, M. Tatlow, and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD, 2014, pp. 1-7.
    [32] L. Ruttledge and D. Flynn, “Emulated inertial response from wind turbines: gain scheduling and resource coordination,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3747-3755, 2015.
    [33] F. Huerta, R. L. Tello, and M. Prodanovic, “Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines,” IEEE Trans. Ind. Electron. vol. 64, no. 3, pp. 1893-1904, 2016.
    [34] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4867, 2017.
    E. Induction Motor Drives
    Field-oriented control:
    [35] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems, 2nd ed., New York: Wiley-IEEE, 2002.
    [36] D. W. Novotny and T. A. Lipo, A review of RFO induction motor parameter estimation techniques, New York: Clarend on Press, 1996.
    [37] K. H. Chao and C. M. Liaw, “Fuzzy robust speed controller for detuned field-orientated induction motor drive,” IEE Proc. Electr. Power Appl., vol. 147, no. 1, pp. 27-36, 2000.
    [38] H. A. Toliyat, E. Levi, and M. Raina, “A review of RFO induction motor parameter estimation techniques,” IEEE Trans. Energy Convers., vol. 18, no. 2, pp. 271-283, 2003.
    [39] P. Shrawane, “Indirect field-oriented control of induction motor,” IEEE International Power Electron. Congress, pp. 102-105, 2010.
    [40] M. D. Reed and F. H. Hofmann, “Direct field-oriented control of an induction machine using an adaptive rotor resistance estimator,” IEEE Convers. Power Electron. Congress, pp. 1158-1165, 2010.
    Equivalent circuit and dynamic modeling:
    [41] A. Gastli, “Identification of induction motor equivalent circuit parameters using the single-phase test,” IEEE Trans. Energy Convers., vol. 14, no. 1, pp. 51-56, 1999.
    [42] A. Boglietti, A. Cavagnino, L. Ferraris, and M. Lazzari, “Induction motor equivalent circuit including the stray load losses in the machine power balance,” IEEE Trans. Energy Convers., vol. 23, no. 3, pp. 796-803, 2008.
    Current control:
    [43] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [44] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, 2003.
    [45] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007.
    [46] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 59, no. 2, pp. 1323-1325, 2012.
    Speed control:
    [47] F. Barrero, A. Gonzalez, A. Torralba, E. Galvan, and L. G. Franquelo, “Speed control of induction motors using a novel fuzzy sliding-mode structure,” IEEE Trans. Fuzzy Syst., vol. 10, no. 3, pp. 375-383, 2002.
    [48] M. N. Uddin, T. S. Radwan, and M. A. Rahman “Performances of fuzzy-logic-based indirect vector control for induction motor drive,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1219-1225, 2002.
    [49] M. Masiala, B. Vafakhah, and A. M. Knight, “Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1732-1740, 2008.
    [50] T. Orlowska-Kowalska and M. Dybkowski, “Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1296-1308, 2009.
    [51] A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors,” IEEE Trans. Ind. Inform., vol. 14, no. 4, pp. 1334-1346, 2017.
    [52] J. Talla, V. Q. Leu, V. Šmídl, and Z. Peroutka, “Adaptive speed control of induction motor drive with inaccurate model,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8532-8542, 2018.
    Direct torque control:
    [53] C. M. Liaw and J. B. Wang, "Design and implementation of a fuzzy controller for a high performance induction motor drive," IEEE Trans. Sys. Man and Cybernetics, vol. 21, no. 4, pp. 921-929, 1991.
    [54] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors-a survey,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744-757, 2004.
    [55] Z. Sorchini and P. T. Krein, “Formal derivation of direct torque control for induction machines,” IEEE Trans.Power Electron., vol. 21, no. 5, pp. 1428-1436, 2006.
    [56] N. R. N. Idris, M. Pacas, and J. Rodriguez, “A new torque and flux controller for direct torque control of induction machines,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1358-1366, 2006.
    [57] P. Correa, C. L. Toh, and M. E. Elbuluk, “Predictive torque control for inverter-fed induction machines,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1073-1079, 2007.
    F. Permanent-Magnet Synchronous Motor
    Motor analysis and design:
    [58] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw, Inc., 1994.
    [59] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control. New Jersey: Prentice Hall, Inc., 2001.
    [60] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
    [61] T. Ishikawa, M. Yamada, and N. Kurita, “Design of magnet arrangement in interior permanent synchronous motor by response surface methodology in consideration of torque and vibration,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1290-1293, 2011.
    [62] S. Chaithongsuk, B. Nahid-Mobarakeh, J. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484 - 2494, 2012
    [63] K. Yamazaki, M. Kumagai, T. Ikemi, and S. Ohki, “A novel rotor design of interior permanent magnet synchronous motors to cope with both maximum torque and iron-loss reduction,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2478-2486, 2013.
    [64] E. Carraro and N. Bianchi, “Design and comparison of interior permanent magnet synchronous motors with non-uniform airgap and conventional rotor for electric vehicle applications,” IET Electr. Power Appl., vol. 8, no. 6, pp. 240-249, 2014.
    [65] S. Morimoto, O. Shohei, Y. Inoue, M. Sanada, “Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5749-5756, 2014.
    Modeling and parameter estimation:
    [66] D. J. Atkinson, P. P. Acarnley, and J. W. Finch, “Observers for induction motor state and parameter estimation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1119-1127, 1991.
    [67] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
    [68] D. Bhowmick, M. Manna, and S. K. Chowdhury, “Estimation of equivalent circuit parameters of transformer and induction motor from load data,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2784-2791, 2018.
    Current and speed controls:
    [69] N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935-1942, 2010.
    [70] Y. A. R. I. Mohamed, “Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1981-1988, 2007.
    [71] F. Morel, X. Lin-Shi, J. M. Rétif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
    [72] T. Türker, U. Buyukkeles, and A. F. Bakan, “robust predictive current controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906-3914, 2016.
    [73] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
    [74] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shieh, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
    [75] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2012.
    [76] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed control design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 900-908, 2014.
    Commutation:
    [77] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, vol. 2, pp. 1045-1051, 2003.
    [78] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006.
    [79] A. Di Gerlando and R. Perini, “Model of the commutation phenomena in a universal motor,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 27-33, 2006.
    [80] E. Rahimi, A. M. Gole, and J. B. Davies, I. T. Fernando, and K. L. Kent, “Commutation failure analysis in multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 378-384, 2010.
    Voltage boosting and field-waekening:
    [81] E. Sato, “Permanent magnet synchronous motor drives for hybrid electric vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 162-168, 2007.
    [82] R. Nalepa and T. Orlowska-Kowalska, “Optimum trajectory control of the current vector of a nonsalient-pole PMSM in the field-weakening region,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2867, 2011.
    [83] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1773, 2014.
    [84] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
    G. Efficiency Improvement
    [85] Z. Qu, M. Ranta, M. Hinkkanen, and J. Luomi, “Loss-minimizing flux level control of induction motor drives,” IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 952-961, 2012.
    [86] S. A. Odhano, R. Bojoi, A. Boglietti, Ş. G. Roşu, and G. Griva, “Maximum efficiency per torque direct flux vector control of induction motor drives,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4415-4424, 2015.
    [87] H. Karkkainen, L. Aarniovuori, M. Niemela, and J. Pyrhonen, “Converter-fed induction motor efficiency: Practical applicability of IEC methods,” IEEE Ind. Electron. Mag., vol. 11, no. 2, pp. 45-57, 2017.
    [88] S. Mallik, K. Mallik, A. Barman, D. Maiti, S. K. Biswas, N. K. Deb, and S. Basu, “Efficiency and cost optimized design of an induction motor using genetic algorithm,” IEEE Trans. Ind. Electron., vol. 64, no. 12, pp. 9854-9863, 2017.

    QR CODE