研究生: |
陳韋存 Chen, Wei-Tsuen |
---|---|
論文名稱: |
一個操作在2.8‐4.8GHz的三角積分鎖相迴路 A Delta-Sigma Phase Locked Loop with 2.8‐4.8 GHz tuning range |
指導教授: |
朱大舜
Chu, Ta-Shun |
口試委員: |
吳仁銘
Wu, Jen-Ming 王毓駒 Wang, Yu-Jiu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 鎖相迴路 、三角積分 、多頻帶壓控振盪器 、相位頻率偵測器 、充電幫浦 、三階濾波器 |
外文關鍵詞: | phase locked loop, Delta-Sigma, multi-band voltage controlled oscillator, phase and frequency detector, charge pump, 3rd loop filter |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今人們對於網路的依賴性與日俱增,而網路的使用也隨著科技的進步從有線網路轉變成無線網路,而提及無線網路最容易聯想到的就是生活中隨處可見的Wi-Fi,只需要一個小小的收發基地台,就可以盡情的利用網路滿足個人的需求,因此,對於研究積體電路如何應用於Wi-Fi電路系統中,也是為具實用性與挑戰性的研究題材。本論文提出了具2.8–4.8 GHz調變範圍的三角積分調變之鎖相迴路,主要組成電路有相位頻率偵測器、充電幫浦、三階迴路濾波器、多頻帶之壓控震盪器、具三角積分調變器控制之除頻器,利用運算放大器降低充電幫浦之非理想效應,採用切換式電容對提升電容電感式壓控震盪器之操作頻率範圍,十六位元之三角積分調變器達成所需之除數解析度,以上子電路建立出完整的鎖相迴路架構,此外,本論文提出之應用於Wi-Fi系統之鎖相迴路利用晶圓廠之1P7M的55nm製程模擬設計完成後進行晶片下線,本論文提出之鎖相迴路面積消耗為0.32mm2,消耗功率為24mW,理論除數解析度可達1/65536,操作頻率範圍由64個頻帶所劃分而成,相位頻率鎖定時間為1.25μs。內文開頭為介紹各種鎖相迴路架並且加以比較,接著依序講解鎖相迴路之數學模型、設計流程、提出電路架構之模擬結果、下線晶片的量測考量,最後對於提出之鎖相迴路做統合性的結論。
In recent years, people are increasingly more and more dependent on internet. With the advancement of science and technology, the methods of surfing on the internet turn from wire network to wireless network. When it comes to wireless internet in our daily life, people always associate Wi-Fi. The requirements of everyone can be satisfied by using wireless internet and it merely needs a small router AP. Therefore, it is a practical and challenging study subject that the integrated circuits can be applied to the circuit architecture of the Wi-Fi system.
A delta-sigma phase locked loop with 2.8–4.8 GHz tuning range was proposed in this thesis. The main architecture of proposed PLL is divided in several parts, phase and frequency detector, charge pump, 3rd loop filter, multi-band voltage controlled oscillator, and a divider controlled by delta-sigma modulator. The non-ideal effect of charge pump was reduced by adding a unit gain buffer. The wide tuning range of voltage controlled oscillator was mainly due to six pairs of switched capacitors. The high enough resolution of divisor is fulfilled by 16-bit delta-sigma modulator. The entire architecture of proposed PLL was composed by the circuits mentioned above. In addition, the circuit of proposed PLL was fabricated using a 1P7M 55nm standard CMOS technology and the core circuit occupied an area of 0.32 mm2. The experiment results indicated the total power consumption is 24 mW at 1.2 V supply voltage, the theoretical resolution of the divisor is 1/65536, the range of operation frequency was divided in 64 bands, and the locked time was 1.25 μs.
Besides, the comparison of three kinds of PLLs was as the beginning of this thesis, and the mathematical model of PLLs, the designed flow, the simulation results of proposed circuits, the considerations of measurement were described step by step. Finally, an integrated conclusion for the proposed PLL was given in the last chapter.
[1]E. Koskin, “Discrete-Time Modelling and Experimental Validation of an All-Digital PLL for Clock-Generating Networks,” in IEEE International Conference on Electronics, Circuit and Systems, Dec. 2016, pp. 434–435.
[2]A. Elkholy, S. Saxena, R. K. Nandwana, A. Elshazly, and P. K. Hanumuolu, “A 2.0–5.5 GHz Wide Bandwidth Ring-Based Digital Fractional-N PLL With Extended Range Multi-Modulus Divider,” IEEE J. Solid-State Circuits, vol. 51, pp. 1771–1784, June 2016.
[3]Z. Wang, C. Huang, and J. Wu, “An ADPLL with a MASH 1-1-1 ΔΣ Time-Digital Converter,” in Mediterranean Electrotechnical Conference, May 2014, pp. 266–270.
[4]Y. C. Huang, and S. I. Liu, “A 2.4GHz Sub-Harmonically Injection-Locked PLL With Self-Calibration Injection Timing,” in IEEE International Solid-State Circuits Conference, April 2012, pp. 338–340.
[5]E. Temporiti, C. W. Wu, D. Baldi, R. Tonietto, and F. Svelto, “A 3 GHz Fractional All-Digital PLL With a 1.8 MHz Bandwidth Implementing Spur Reduction Techniques,” IEEE J. Solid-State Circuits, vol. 44, pp. 824–834, June 2009.
[6]C. C. Chung, and C. Y. Lee, “An All-Digital Phase-Locked Loop for High-Speed Clock Generation,” IEEE J. Solid-State Circuits, vol. 38, pp. 347–351, Feb. 2003.
[7]W. Z. Chen, and J. T. Wu, “A 2-V, 1.8-GHz BJT Phase-Locked Loop,” IEEE J. Solid-State Circuits, vol. 34, pp. 784–789, Jun 1999.
[8]Y. Sumi, N. Kitai, R. Furuhashi, H. Ishii, Y. Matsuda, and Y. Fukui, “Dead-zones-less Frequency Synhtesizer by Hybrid Phase Detectors,” in Proc. IEEE International Symposium on Circuits and Systems, June. 1999, vol. 4, pp. 410–414.
[9]W. Rhee, “Design of High-Performance CMOS Charge Pumps in Phase-Locked Loops,” in Proc. IEEE International Symposium on Circuits and Systems, June 1999, vol. 2, pp. 545–548.
[10]H. O. Johansson, “A Simple Precharged CMOS Phase Frequency Detector,” IEEE J. Solid-State Circuits, vol. 33, pp. 295–299, Feb. 2009.
[11]M. V. Paemel, “Analysis of a Charge-Pump PLL: A New Model,” IEEE Transactions on Communications, vol. 42, pp. 2490–2498, Jul. 1994.
[12]T. A. D. Riley, M. A. Copeland, and T. A. Kwasniewski, “Delta-Sigma Modulation in Fractional-N Frequency Sythesis,” IEEE J. Solid-State Circuits, vol. 28, pp. 553–559, Feb. 1993.
[13]S. G. Wilson, R. Hale, and C. D. Hsu, “An Inpexpensive Demonstration of Phase-Lock Loop Principles,” IEEE Transactions on Education, vol. 23, pp. 200–204, Nov. 1980.
[14]E. N. Protonotarions, “Pull-In Time in Second-Order Phase-Locked Loops With a Sawtooth Comparator,” IEEE Transactions on Circuit Theory, vol. 17, pp. 372–378, Aug. 1970.
[15]D. T. Hess, “Cycle Slipping in a First-Order Phase-Locked Loop,” IEEE Transactions on Communication Technology, vol. 16, pp. 255–260, April 1968.
[16]林宇亮,《寬頻低雜訊放大器與三角積分調變分數型頻率合成器之研製》,桃園:國立中央大學電機工程研究所碩士論文,2007。
[17]黃博彥,《應用於WiMAX通訊系統之Σ-Δ分數型頻率合成器設計》,桃園:國立中央大學電機工程研究所碩士論文,2007。
[18]高曜煌,《射頻鎖相迴路IC設計》。滄海書局,2005。
[19]劉深淵,楊清淵,《鎖相迴路》。滄海書局,2006。
[20]Behzad Razavi著,李峻霣譯,《類比CMOS積體電路設計(修訂版)》。東華書局,2013。