簡易檢索 / 詳目顯示

研究生: 陳志宗
Chih-Tsung Chen
論文名稱: 合作式多用戶OFDM感知無線電系統之資源分配機制
A Resource Allocation Scheme for Cooperative Multiuser OFDM-Based Cognitive Radio Systems
指導教授: 王晉良
Chin-Liang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 47
中文關鍵詞: 資源分配多用戶正交分頻多工合作式通訊感知無線電
外文關鍵詞: resource allocation, MU-OFDM, cooperative communications, cognitive radio
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線寬頻網路中,正交分頻多工系統(OFDM)被視為是一個具有潛力的無線通訊技術。雖然在多用戶正交分頻多工(MU-OFDM)系統中,其系統的容量可以藉由指派每一個子通道到具有最好通道的用戶,且其通道上的功率分配是採用water-filling的方式而達到最大化,但是它的複雜度過高,而不被實際的系統所接受。為了避免同時對子通道以及功率做最佳化分配所帶來的高運算複雜度,我們通常會採用次佳化的演算法來代替。最常見到的做法是將子通道分配與功率分配分開做。一般來說,這樣的次佳化資源分配方法必須要在系統的總容量與系統的複雜度之間做取捨。
    本篇論文主要針對合作式多用戶正交分頻多工系統提出一個次佳化的資源分配演算法,同時觀察空間分集(spatial diversity)對系統容量的影響。藉由合作式通訊(cooperative communications)的協定方式,將三點的中繼網路(three-node relay networks)簡化成兩點的網路(two-node network),那麼對於合作式多用戶正交分頻多工系統來說,其資源分配的問題相當於多用戶正交分頻多工系統。在合作式的網路中,我們採用了decode-and-forward機制。如此一來,在資源分配的問題會多增加一個額外的限制條件。從模擬的結果可以看出提出的演算法能增加系統的總容量,且運算複雜度與未加入合作式通訊的多用戶正交分頻多工系統具有相同的階層。
    再者,為了提升頻寬效益,我們將感知無線電(cognitive radio)加入合作式多用戶正交分頻多工系統。在感知無線電系統裡,為了維持主用戶(primary user)的通訊,其資源分配的問題必須包含最大功率的限制。從模擬的結果可以得知加入合作式通訊的多用戶正交分頻多工感知無線電系統比起未加入合作式通訊的多用戶正交分頻多工感知無線電系統具有較高的系統總容量,且其運算複雜度具有相同階層。


    Multiuser orthogonal frequency division multiplexing (MU-OFDM) is one of the promising techniques for next-generation wireless broadband networks. Although the overall capacity of an MU-OFDM system can be maximized by assigning each subchannel to the user with the best channel-to-noise ratio for that subchannel and distributing power subsequently by water-filling, the complexity is too high to be acceptable for practical applications. To avoid the prohibitive complexity for solving the joint subchannel and power allocation problem, many suboptimal algorithms have been studied in the literature. Among them, separating the subchannel allocation from the power allocation is one of the common schemes. In general, such suboptimal resource allocation methods have a tradeoff between the system capacity and computational complexity.
    This thesis presents a suboptimal resource allocation algorithm for cooperative MU-OFDM systems, where the effect of the spatial diversity on the system capacity is investigated. By simplifying a three-node relay network to a two-node network, the resource allocation problem for cooperative MU-OFDM systems is equivalent to that for the traditional MU-OFDM systems. To use the decode-and-forward scheme in the cooperative network, an additional constraint is put on the resource allocation problem. It is shown that the proposed algorithm increases the system capacity with the same order of computational complexity as a non-cooperative MU-OFDM system.
    To further improve the spectrum efficiency, we employ the concept of cognitive radio to cooperative MU-OFDM systems. In such cognitive radio systems, the resource allocation problem must include a peak power constraint to protect the primary users. It is demonstrated that the proposed cooperative multiuser OFDM-based cognitive radio system has higher system capacity than that without combining cooperative communications under the same order of computational complexity.

    Abstract i Contents iii List of Figures v List of Tables vi Chapter 1 Introduction 1 1.1 Multiuser Orthogonal Frequency Division Multiplexing 1 1.2 Cooperative Communications 2 1.3 Cognitive Radio 3 1.4 Overview of Resource Allocation in MU-OFDM Systems 4 Chapter 2 Resource Allocation Problem in MU-OFDM Systems 6 2.1 An MU-OFDM Downlink System Model 6 2.2 Optimal Subchannel and Power Allocation 7 Chapter 3 Related Works for the Resource Allocation Problem in MU-OFDM Systems 10 3.1 Resource Allocation in MU-OFDM Downlink Systems with Proportional Rate Constraints 10 3.1.1 Suboptimal Subchannel Allocation 11 3.1.2 Optimal Power Distribution for a Fixed Subchannel Allocation 12 3.2 Joint Power and Channel Allocation for Uplink Cognitive Radios 14 Chapter 4 A Resource Allocation Scheme for Cooperative Multiuser OFDM-Based Cognitive Radio Systems 19 4.1 Three-node Relay Networks 20 4.2 A Resource Allocation Scheme for Cooperative MU-OFDM Downlink Systems 22 4.2.1 Proposed Suboptimal Subchannel Allocation 25 4.2.2 Proposed Fine Power Allocation for a Fixed Subchannel Allocation 26 4.3 A Resource Allocation Scheme for Cooperative Multiuser OFDM-Based Cognitive Radio Uplink Systems 28 4.3.1 Proposed Suboptimal Subchannel Allocation 29 4.3.2 Proposed Fine Power Allocation for a Fixed Subchannel Allocation 30 Chapter 5 Simulation Results 33 5.1 A Cooperative MU-OFDM Downlink System 33 5.1.1 The Effect of the Coarse Power Allocation in the Subchannel Allocation 34 5.1.2 The Effect of the Outage Constraint 36 5.1.3 The Effect of an MU-OFDM Downlink System with or without Cooperative Communications 38 5.2 A Cooperative Multiuser OFDM-Based Cognitive Radio Uplink System 40 5.2.1 The Effect of the SINR Constraint at Primary Users 40 5.3 Complexity Comparison 42 Chapter 6 Conclusions 43 References 45

    [1]R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston/London: Artech House, 1999.
    [2]E. C. van der Meulen, “Three-terminal communication channels”, Adv. Appl. Prob.3, 1971.
    [3]A. Sendonaris E. Erkip, and B. Aazhang, “User cooperation diversity-Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1938, Nov. 2003.
    [4]A. Sendonaris E. Erkip, and B. Aazhang, “User cooperation diversity-Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939-1948, Nov. 2003.
    [5]J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
    [6]H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh, “Collaborative beamforming for distributed wireless ad hoc sensor network,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4110-4124, Nov. 2005.
    [7]G. Ganesan and Ye Li, “Cooperative spectrum sensing in cognitive radio, Part I: Two user networks,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 2204-2213, June 2007.
    [8]G. Ganesan and Ye Li, “Cooperative spectrum sensing in cognitive radio, Part II: Multiuser networks,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 2214-2222, June 2007.
    [9]Federal Communications commission (FCC), “Spectrum policy task force,” ET Docket no. 02-135, Nov. 15, 2002.
    [10]J. Mitola III and G. Q. Maguire, Jr., “Cognitive radio: Making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.
    [11]J. Mitola, “Cognitive Radio: An integrated agent architecture for software defined radio,” PhD dissertation, Royal Institute of Technology (KTH), Sweden, 2000.
    [12]J. Gross and M. Bohge, “Dynamic mechanisms in OFDM wireless systems: A survey on mathematical and system engineering contributions,” Tech. rep. TKN-06-001, Telecommun. Networks Group, Technische Univ., Berlin, May 2006.
    [13]J. Lee, R. V. Sonalkar, and J.M. Cioffi, “A multi-user rate and power control algorithm for VDSL,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM 2002), Taipei, Taiwan, vol. 2, Nov. 2002, pp. 1264-1268.
    [14]I. Kim, H. L. Lee, B. Kim, and Y. H. Lee, “On the use of linear programming for dynamic subchannel and bit allocation in multiuser OFDM,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM 2001), San Antonio, TX, vol. 6, Nov. 2001, pp. 3648-3652.
    [15]Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2726-2737, Nov. 2005.
    [16]W. Rhee and J. M. Cioffi, “Increasing in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. IEEE Int. Veh. Tech. Conf., Tokyo, Japan, vol. 2, May 2000, pp. 1085-1089.
    [17]P. Wang, M. Zhao, L. Xiao, S. Zhou, and J. Wang, “Power allocation in OFDM-based cognitive radio systems,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM 2007), Washington, DC, USA, Nov. 2007, pp. 4061-4065.
    [18]A. T. Hoang and Y.-C. Liang, “A two-phase channel and power allocation scheme for cognitive radio networks,” Proc. of The 17th Annual IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC’06), Helsinki, Finland, Sep. 2006, pp. 1-5.
    [19]F.-S. Chu and K.-C. Chen, “Radio resource allocation in OFDMA cognitive radio systems,” Proc. of The 18th Annual IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC’07), Athens, Greece, Sep. 2007, pp. 1-5.
    [20]F. F. Digham, “Joint power and channel allocation for cognitive radios,” IEEE Wireless Commun. and Networking Conference (WCNC 2008), March 2008, pp. 882-887.
    [21]T. Cover and J. Thomas, Elements of Information Theory, J. Wiley & Sons, Inc., 1991.
    [22]Q. Zhan, J. Zhang, C. Shao, Y. Wang, P. Zhang, and R. Hu, “Power allocation for regenerative relay channel with Rayleigh fading,” in Proc. IEEE Veh. Technol. Conf., vol. 2, May 2004, pp. 1167-1171.
    [23]T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle River, NJ: Prentice-Hall, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE