研究生: |
黃義鈞 YiChun Huang |
---|---|
論文名稱: |
環金屬化銥(III)錯合物之合成及其在有機電致發光元件上之應用 Synthesis of Cyclometalated Iridium (III) Complexesand Their Applications in Organic Light Emitting Devices |
指導教授: |
鄭建鴻 教授
Chien-Hong Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 274 |
中文關鍵詞: | 有機電致發光元件 、環金屬化銥(III)錯合物 、八面體 |
外文關鍵詞: | Organic Light Emitting Devices, Cyclometalated Iridium (III) Complexesand, octahedral |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的主旨在於合成六配位、八面體的銥金屬錯合物並研究它們的發光性質。首先我們利用真空蒸鍍的方式作成多層式的有機發光二極體元件,而這些元件具有高效率紅色磷光性質。我們所合成出來的銥金屬錯合物所作成的元件,最大外部量子效率分別可以達到10%(紅光)以及5%(純紅光);最好的紅光材料之色度座標為(0.66, 033),將它掺雜於CBP,並且用洞子阻擋層BCP,在電壓為9.8伏特時,最大外部量子效率可達到15.4 % 能量效率最大值為8.4 lm/W。
我們發展一系列喹喔啉及吡嗪配位基的銥金屬錯合物的簡易合成方法,藉由改變配位基的共軛長度以及不同輔助配位基的選擇,可調整銥金屬錯合物的放光波長,原因是放光的主要貢獻是來自於三重激發態的金屬到配位基之電荷轉移。以這些銥金屬錯合物所作成的有機電激發光元件,其光色範圍遍佈橘色到紅外光。這些元件的驅動電壓很低(約4伏特),最大亮度可達70000 cd/m2。
此外,C^N配位基也可以是各式各樣的有機金屬配位基。以benzoimidazole及thiazole為配位基的銥金屬磷光材料,分別可以作成綠、黃及紅光元件且元件效率都不錯。銥金屬錯合物主要是可以使電子與洞子在錯合物的位置上直接再結合,使得銥錯合物成為有效率發光材料,再經由真空蒸鍍的方式,產生高效率的磷光元
Several iridium(III) complexes have been synthesized and their luminescent properties have been studied. We demonstrate very high-efficiency red phosphorescence from a multi-layer organic light-emitting diode formed by vacumn deposition. Highly efficient red (hex>10 %) to pure red (hex>5 %) emission has been demonstrated by the Iridium(III) complexes. The Commission Internationale de I’Eclairage chromaticity coordinates (x,y) for the best red emission from the complexes are (0.66, 0.33).When they were doped into a wide-gap (4,4-N,N’-dicarbazole-biphenyl) host displays a peak external quantum efficiency of 15.4 % and current efficiency of 22.3 cd/A at a brightness of 3450 cd/m2 and a current density of 13.1 mA/cm2. A peak power efficiency of 8.4 lm/W was measured at 1475 cd/m2 and 5 mA/cm2.
Novel Ir complexes comprising of Quinoxaline and Pyrazine ligands have been developed through simple synthesis procedure. Emission wavelength could be tuned by controlling the conjugation length of the ligands and different ancillary ligands because the emission originates from triplet metal-to-ligand-charge-transfer excited state. OLEDs based on these materials display orange to infrared electrophosphorescence with low turn-on voltages (~ 4 V), maximum luminance approaching 70000 cd /m2 and efficiency up to 22.3 cd /A.
The iridium complexes have two cyclometalated (C^N) ligands and a single monoanionic, bidentate ancillary ligand (LX), i.e., C^N2Ir(LX). The C^N ligands can be any of a wide variety of organometallic ligands. The LX ligands used for this study were all â-diketonates, with the major emphasis placed on acetylacetonate (acac) complexes. Bis-cyclometallated iridium complexes containing benzoimidazole- and thiazole-based ligands can be fabricated into green, yellow, and red-emitting devices of high performance. The Ir complexes trap both electrons and holes, which facilitates the direct recombination of holes and electrons on the complex sites. These results suggest that Bis-cyclometallated iridium complexes are an effective material for producing efficient phosphorescent devices by vacumn deposition.
參考文獻
1. Burrows, P. E.; Gu, G.; Bulovic V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. IEEE Trans. Electron Device 1997, 44, 11888.
2. (a) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. (b) Helfrich, W.; Schneider, W. G. Phys. Rev. Lett. 1965, 14, 229. (c) Williams, D. F.; Schadt, M. Proc. IEEE. 1970, 58, 476.
3. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
4. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
5. Burroughes, J. H.; Bradley, D. C.; Brown, A. R.; Marks, R. N.; Mackay, K. D.; Friend, R.H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
6. Dodabalapur, A.; Bell lab. Solid. State Comm. 1993, 102, 259.
7. Mizes H. A.; Conwell E. M. Phys. Rev. Lett. 1993, 70, 1505.
8. Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature, 1998, 395, 151.
9. Thompson, M. E.; Shoustikov, A.; You, Y.; Sibley, S.; Baldo, M.; Koslov, V.; Burrows, E. P.; Forrest, S. R. MRS Abstract, G2.4, Spring Meeting, 1998
10. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett., 1999, 74, 442.
11. Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B, 1999, 60, 14422.
12. (a) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. (b) Thompson, M. E.; Burrows, P. E.; Forrest, S. R. Cur. Opinion Solid State Mater. Sci. 1999, 4, 369.
13. (a) Wilde, A. P.; King, K. A.; Watts, R. J. J. Phys. Chem. 1991, 95, 629. (b) Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647. (c) Crosby, G. A. J. Chem. Phys. 1967, 64, 160. (d) Columbe, M. C.; Hauser, A.; Güdel, H. U. Top. Curr. Chem. 1994, 171, 143.
14. Gu, G.; Garbuzov, D. Z.; Burrows, P. E.; Venkatesh, S.; Forrest, S. R.; Thompson, M. E. Opt. Lett. 1997, 22, 396.
15. Tsutsui, T. and Satio, S. in Intrinsically Conducting Polymer: An Emerging Technology, edited by M. Aldissi, Kluwer Academic, Dordreccht 1993, p. 123.
16. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett., 1999, 75, 4.
17. Thompson, M. E.; Burrows, P. E.; Forrest, S. R. Cur. Opinion Solid State Mater. Sci., 1999, 4, 369.
18. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature, 2000, 403, 750.
19. Handy, E. S.; Pal, A. J.; Rubner, M. F. J. Am. Chem. Soc. 1999, 121, 3525.
20. Bernhard, S.; Gao, X.; Malliaras, G. G.; Abruna, H. D. Adv. Mater. 2002, 14, 436.
21. (a) Alpha, B.; Lehn, J. M.; Mathis, G. Angew. Chem. Int. Ed. Engl. 1987, 26, 266. (b) Sun, P. P.; Dun, J. P.; Shih, H. T.; Cheng, H. C. Appl. Phys. Lett. 2002, 81, 792.
22. Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. C. J. Am. Chem. Soc. 2001, 78, 1622.
23. Su, Y. J., Huang, H. L., Li, C. L., Chien, C. H., Tao, Y. T., Chou, P. T., Datta, S., Liu, R. S. Adv. Mater. 2003, 15, 884.
24. Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377.
25. Greenhill J. V.; Loghmani-Khouzani H.; Maitland D. J. Can. J. Chem., 1991, 69, 696.
26. Rastogi R.; Sharma S.; Indian J. Chem. Sect. B, 1982, 21, 485.
27. Nonoyama, M. Bull. Chem. Soc. Jpn. 1974, 47, 767.
28. Kim Y. S.; Kim J. H.; □Kim J. S.; No K. T. J. Chem. Inf. Comput. Sci. 2002, 42, 75.
29. Duan, J. P.; Sun, P. P.; Cheng, C. H. Adv. Mater. 2003, 15, 224.
30. (a) Hung, L. S.; Cheng, C. H. Materials Science and Engineering R: Reports 2002, 39, 143. (b) Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Weong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phys. Lett., 2003, 82, 2422. (c) Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E. Appl. Phys. Lett., 2003, 83, 3818.
31. Yeh, S. J.; Wu, M. F.; Chen, C. T.; Song, Y. H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C. H. Adv. Mater. 2005, 17, 285.
32. Hall, D. M., Hwang, H. Y., Bhanthumnavin, B., J. Chem. Soc.Perkin Trans II, 1973, 2131.
33. Loeppky, R. N.; Cui, W. Tetrahedron Lett., 1998, 14, 1845.
34. (a) Mdleleni, M. M.; Bridgewater, J. S.; Watts, R. J.; Ford, P. C.; Inorg. Chem. 1995, 34, 2334. (b) Cockburn, B. N.; Howe, D. V.; Keating, T.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc. Dalton, 1973, 404
35. (a) Trofimenko, S. J. Am. Chem. Soc. 1967, 89, 3170. (b) Trofimenko, S. Chem. Rev. 1993, 93, 943. (c) Trofimenko, S. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, Imperial College Press, London, 1999, p. 943; (d) Trofimenko, S. Prog. Inorg. Chem. 1986, 34, 115.
36. (a) Kwong, R. C.; Sibley, S.; Dubovoy, T.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 1999, 11, 3709. (b) Cleave, V.; Yahioglu, G.; Barny, P. L.; Friend, R. H.; Tessler, N. Adv. Mater. 1999, 11, 285.
37. (a) Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Weong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phys. Lett., 2003, 82, 2422. (b) Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E. Appl. Phys. Lett., 2003, 83, 3818.
38. 莊士億, 八面體金屬錯合物在有機電致發光材料上的應用: 鎵、銦及銥混配位基金屬錯合物的合成及光電性質之研究, 國立清華大學博士論文, 民國九十二年。
39. 黃至瑋, 苯駢咪唑與吲哚配位基銥錯合物之合成及其在有機電致發光元件上之應用, 國立清華大學博士論文, 民國九十三年。
40. Ma, B.; Knowles, D. B.; Brown, C. S.; Murphy, D.; Thompson, M. E. US Patent, 2004, 6,687,266.
41. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2000, 90, 5048.