研究生: |
陳昕霈 Chen, Hsin-Pei |
---|---|
論文名稱: |
探索外層剝離超新星之潛在倖存伴星的可觀測性:以Ic型超新星SN 2020oi為例 Exploring the Observability of Surviving Companions of Stripped-Envelope Supernovae: A Case Study of Type Ic SN 2020oi |
指導教授: |
潘國全
Pan, Kuo-Chuan |
口試委員: |
朱有花
Chu, You-Hua 陳科榮 Chen, Ke-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 天文研究所 Institute of Astronomy |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 雙星 、伴星 、熱核塌縮超新星 、Ic型超新星 、流體動力學模擬 |
外文關鍵詞: | Binary stars, Companion stars, Core-collapse supernovae, Type Ic supernovae, Hydrodynamical simulations |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
外層剝離超新星(Stripped-envelope supernovae, SE SNe)之外層剝離曾被認為是單一顆大質量恆星的強烈恆星風所造成的現象,但後續的觀測結果顯示,此種超新星更可能源自於雙星系統中雙星間的交互作用。最直接支持雙星系統來源的觀測證據,是觀測上找到此種超新星的倖存伴星,因為多個理論模擬研究已證明,超新星的伴星能夠歷經超新星爆發衝擊後仍存續,而且有機會被望遠鏡給捕捉。近期,根據哈伯太空望遠鏡(Hubble Space Telescope, HST)的光度及頻譜觀測,Gagliano等人發表了一個位於鄰近星系M100(距離約17.1百萬秒差距)的Ic型超新星SN 2020oi,並認為其源自雙星系統。根據Gagliano等人提供的SN 2020oi雙星系統性質,我們進行了超新星-伴星交互作用的二維流體力學模擬,以及受衝擊後倖存伴星之後續演化模擬。我們的結果顯示,倖存伴星在受衝擊後,亮度增加了兩個數量級,且表面頻譜暫時性的變紅(即表面溫度變低)。此伴星有機會以韋伯太空望遠鏡(James Webb Space Telescope, JWST)的近紅外相機NIRCam的短波長頻道進行偵測。此外,我們的伴星模型的相對星等在達到最大值後便產生明顯的劇降:這也許是一個分辨外層剝離超新星的倖存伴星訊號的好指標。
Stripped-envelope supernovae (SE SNe) were considered as the explosions of single massive stars with strong stellar winds, while later observations favor binary origins. One direct evidence to support the binary origins is to find the surviving companions of SE SNe since previous numerical studies suggested that the binary companion should survive the supernova impact and could be detectable. Recently, Gagliano et al. (2022) reported that the nearby Type Ic SN 2020oi in M100 (~17.1 Mpc) resulted from a binary system based on the HST photometric and spectroscopic observation. Based on the suggested binary properties of SN 2020oi, we conduct two-dimensional hydrodynamics simulations of supernova-companion interactions and the subsequent post-impact evolution of the companion. Our results suggest that a surviving companion becomes brighter in two orders of magnitude and temporarily redder after the SN impact. The companion might be detectable with the JWST NIRCam short wavelength channel in a few years. Furthermore, the predicted magnitudes of surviving companions show a significant magnitude gradient around the peak. This could be another good indicator to identify the surviving companion from a SE SN.
1. Modjaz, M., Guti´errez, C. P., & Arcavi, I. 2019, Nature Astronomy, 3, 717. doi:10.1038/s41550-019-0856-2
2. Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157. doi:10.1086/153315
3. Wheeler, J. C., Lecar, M., & McKee, C. F. 1975, ApJ, 200, 145. doi:10.1086/153771
4. Gal-Yam, A., Arcavi, I., Ofek, E. O., et al. 2014, Nature, 509, 471. doi:10.1038/nature13304
5. Groh, J. H. 2014, A&A, 572, L11. doi:10.1051/0004-6361/201424852
6. Langer, N. 2012, ARA&A, 50, 107. doi:10.1146/annurev-astro-081811-125534
7. Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444. doi:10.1126/science.1223344
8. Smartt, S. J. 2015, PASA, 32, e016. doi:10.1017/pasa.2015.17
9. Prentice, S. J., Ashall, C., James, P. A., et al. 2019, MNRAS, 485, 1559. doi:10.1093/mnras/sty3399
10. Fryxell, B. A. & Arnett, W. D. 1981, ApJ, 243, 994. doi:10.1086/158664
11. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2010, ApJ, 715, 78. doi:10.1088/0004-637X/715/1/78
12. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2012, ApJ, 750, 151. doi:10.1088/0004-637X/750/2/151
13. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2012, ApJ, 760, 21. doi:10.1088/0004-637X/760/1/21
14. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2014, ApJ, 792, 71. doi:10.1088/0004-637X/792/1/71
15. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2013, ApJ, 773, 49. doi:10.1088/0004-637X/773/1/49
16. Liu, Z.-W., Moriya, T. J., & Stancliffe, R. J. 2015, MNRAS, 454, 1192. doi:10.1093/mnras/stv2076
17. Bauer, E. B., White, C. J., & Bildsten, L. 2019, ApJ, 887, 68. doi:10.3847/1538-4357/ab4ea4
18. Zeng, Y., Liu, Z.-W., & Han, Z. 2020, ApJ, 898, 12. doi:10.3847/1538-4357/ab9943
19. Liu, Z.-W. & Zeng, Y. 2021, MNRAS, 500, 301. doi:10.1093/mnras/staa3280
20. Rau, S.-J. & Pan, K.-C. 2022, ApJ, 933, 38. doi:10.3847/1538-4357/ac7153
21. Hirai, R., Sawai, H., & Yamada, S. 2014, ApJ, 792, 66. doi:10.1088/0004-637X/792/1/66
22. Liu, Z.-W., Tauris, T. M., R¨opke, F. K., et al. 2015, A&A, 584, A11. doi:10.1051/0004-6361/201526757
23. Hirai, R., Podsiadlowski, P., & Yamada, S. 2018, ApJ, 864, 119. doi:10.3847/1538-4357/aad6a0
24. Ogata, M., Hirai, R., & Hijikawa, K. 2021, MNRAS, 505, 2485. doi:10.1093/mnras/stab1439
25. Maund, J. R., Smartt, S. J., Kudritzki, R. P., et al. 2004, Nature, 427, 129. doi:10.1038/nature02161
26. Cao, Y., Kasliwal, M. M., Arcavi, I., et al. 2013, ApJL, 775, L7. doi:10.1088/2041-8205/775/1/L7
27. Bersten, M. C., Benvenuto, O. G., Folatelli, G., et al. 2014, AJ, 148, 68. doi:10.1088/0004-6256/148/4/68
28. Eldridge, J. J. & Maund, J. R. 2016, MNRAS, 461, L117. doi:10.1093/mnrasl/slw099
29. Fox, O. D., Van Dyk, S. D., Williams, B. F., et al. 2022, ApJL, 929, L15. doi:10.3847/2041-8213/ac5890
30. Sun, N.-C., Maund, J. R., Crowther, P. A., et al. 2022, MNRAS, 510, 3701. doi:10.1093/mnras/stab3768
31. Zapartas, E., de Mink, S. E., Van Dyk, S. D., et al. 2017, ApJ, 842, 125. doi:10.3847/1538-4357/aa7467
32. Gagliano, A., Izzo, L., Kilpatrick, C. D., et al. 2022, ApJ, 924, 55. doi:10.3847/1538-4357/ac35ec
33. Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3. doi:10.1088/0067-0049/192/1/3
34. Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4. doi:10.1088/0067-0049/208/1/4
35. Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15. doi:10.1088/0067-0049/220/1/15
36. Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34. doi:10.3847/1538-4365/aaa5a8
37. Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10. doi:10.3847/1538-4365/ab2241
38. Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273. doi:10.1086/317361
39. Dubey, A., Reid, L. B., & Fisher, R. 2008, Physica Scripta Volume T, 132, 014046. doi:10.1088/0031-8949/2008/T132/014046
40. Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501. doi:10.1086/313304
41. Couch, S. M., Graziani, C., & Flocke, N. 2013, ApJ, 778, 181. doi:10.1088/0004-637X/778/2/181
42. Ricker, P. M. & Taam, R. E. 2008, ApJL, 672, L41. doi:10.1086/526343
43. Khatami, D. K. & Kasen, D. N. 2019, ApJ, 878, 56. doi:10.3847/1538-4357/ab1f09
44. Arnett, W. D. 1982, ApJ, 253, 785. doi:10.1086/159681
45. Pan, K.-C., Ricker, P. M., & Taam, R. E. 2015, ApJ, 806, 27. doi:10.1088/0004-637X/806/1/27
46. Pakmor, R., R¨opke, F. K., Weiss, A., et al. 2008, A&A, 489, 943. doi:10.1051/0004-6361:200810456
47. Fitzpatrick, E. L. 1999, PASP, 111, 63. doi:10.1086/316293
48. Indebetouw, R., Mathis, J. S., Babler, B. L., et al. 2005, ApJ, 619, 931. doi:10.1086/426679
49. Rho, J., Evans, A., Geballe, T. R., et al. 2021, ApJ, 908, 232. doi:10.3847/1538-4357/abd850
50. Wheeler, J. C., Johnson, V., & Clocchiatti, A. 2015, MNRAS, 450, 1295. doi:10.1093/mnras/stv650
51. Fox, O. D., Azalee Bostroem, K., Van Dyk, S. D., et al. 2014, ApJ, 790, 17. doi:10.1088/0004-637X/790/1/17
52. Ryder, S. D., Van Dyk, S. D., Fox, O. D., et al. 2018, ApJ, 856, 83. doi:10.3847/1538-4357/aaaf1e
53. Ryder, S. D., Murrowood, C. E., & Stathakis, R. A. 2006, MNRAS, 369, L32. doi:10.1111/j.1745-3933.2006.00168.x
54. Maund, J. R., Pastorello, A., Mattila, S., et al. 2016, ApJ, 833, 128. doi:10.3847/1538-4357/833/2/128
55. Sun, N.-C., Maund, J. R., Hirai, R., et al. 2020, MNRAS, 491, 6000. doi:10.1093/mnras/stz3431
56. Benvenuto, O. G., Bersten, M. C., & Nomoto, K. 2013, ApJ, 762, 74. doi:10.1088/0004-637X/762/2/74
57. Folatelli, G., Bersten, M. C., Benvenuto, O. G., et al. 2014, ApJl, 793, L22. doi:10.1088/2041-8205/793/2/L22
58. Maund, J. R., Arcavi, I., Ergon, M., et al. 2015, MNRAS, 454, 2580. doi:10.1093/mnras/stv2098
59. Maund, J. R. 2019, ApJ, 883, 86. doi:10.3847/1538-4357/ab2386
60. Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 9. doi:10.1088/0067-0049/192/1/9
61. Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90. doi:10.1109/MCSE.2007.55
62. van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science and Engineering, 13, 22. doi:10.1109/MCSE.2011.37
63. Virtanen, P., Gommers, R., Burovski, E., et al. 2019, Zenodo