研究生: |
李翊瑋 Lee, Yi Wei |
---|---|
論文名稱: |
奈升等級微流體生物膜反應器 Nanoliter microfluidic biofilm bioreactor |
指導教授: |
楊雅棠
Yang, Ya Tang |
口試委員: |
莊嘉揚
陳致真 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 微流體晶片 、生物反應器 、生物膜 、大腸桿菌 |
外文關鍵詞: | microfluidic, bioteactor, biofilm, E.coli |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌培養技術應用在微生物學已經成熟,可是在液體上的過量消耗以及機台的維護上所需費力,在體積大的生物反應器上現代已經越來越微小化在晶片上,我們使用了大腸桿菌定期稀釋以及將生物反應室最小化分成兩部分,來確實執行模擬出宏觀生物反應器,我們設計了微流體晶片生物反應器(microfluidic bioreactor),這組裝置可執行自動化,長時間培養在nanoliter等級上的生物培養,跟即時的顯微鏡測量計算,因為微流體晶片的高面積體積比,可以有效地將浮游生物及生物膜共同生長,我們期待是有機會來時驗出更多的生物實驗。
Bacterial culture is a basic technique in both fundamental and applied microbiology. The excessive reagent consumption and laborious maintenance of bulk bioreactors for microbial culture have prompted the development of miniaturized on-chip bioreactors. With the minimal choice of two compartments (N = 2) and discrete time, periodic dilution steps, we realize a microfluidic bioreactor that mimics macroscopic serial dilution transfer culture. This device supports automated, long-term microbial cultures with a nanoliter-scale working volume and real-time monitoring of microbial populations at single-cell resolution. Because of the high surface-to-volume ratio, the device also operates as an effective biofilm-flow reactor to support cogrowth of planktonic and biofilm populations. We expect that such devices will open opportunities in many fields of microbiology.
1 J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial BioÞlms: A Common Cause of
Persistent Infections,” Science 284, 1318, (1999).
2 J. Kim, H.-D. Park, and S. Chung, “Microfluidic Approaches to Bacterial Biofilm Formation,” Molecules 17, 9818, (2012).
3 A. Karmi, D. Karig, A. Kumar, and A. M. Ardekani, “Interplay of physical mechanisms and biofilm processes: review of microfluidic methods,” Lab Chip 15, 23, (2015).
4 J. Kim, M. Hegde, S. H. Kim, T. K. Wood, and A. Jayaraman, “A microfluidic device for highthroughput bacterial biofilm studies,” Lab Chip 12, 1157, (2012).
5 V. Janakiraman, D. Englert, A. Jayaraman, and H. Baskaran, “Modeling Growth and Quorum Sensing in Biofilms Grown in Microfluidic Chambers,” Ann. Biomed Eng. 37, 1206, (2009).
6 S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofi lm formation and dispersal in a microfluidic device,” Nat. Commun. 3, 613, (2012).
7 K. P. Kim, Y. G. Kim, C. H. Choi, H. E. Kim, S. H. Lee, W. S. Chang, and C. S. Lee, “In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device,” Lab Chip 10, 3296, (2010).
8 M. R. Benoit, C. G. Conant, C. Ionescu-Zanetti, M. Schwartz, and A. Matin, “New Device for High-Throughput Viability Screening of Flow Biofilms,” Appl. Environ. Microbiol. 76, 4136, (2010).
9 P. Sun, Y. Liu, J. Sha, Z. Y. Zhang, Q. Tu, P. Chen, and J. Y. Wang, “High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments,” Biosens. Bioelectron. 26, 1993, (2011).
10 M. Unger et al., “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science 288, 113, (2000).
11 J. Melin and S. R. Quake, “Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation,” Annu. Rev. Biophys. Biomol. Struct. 36, 213, (2007).
12 A. M. Streets and Y. Huang, “Chip in a lab: Microfluidics for next generation life science research,” Biomicrofluidics 7, 11302, (2013).
13 E. de Cr_ecy et al., “Development of a novel continuous culture device for experimental evolution of bacterial populations,” Appl. Microbio’l. Biotechnol. 77, 489, (2007).
14 V. A. de Crecy-Lagard, J. M. Bellalou, R. Mutzel, and P. Marliae, “Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli,” BMC Biotechnol. 1, 10, (2001).
15 Novick and Szilard, “Description of Chemostat,” Science 112, 715, (1950).
16 F. K. Balagadde, L. C. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, “Long-term monitoring of bacteria undergoing programmed population control in a microchemostat,” Science 309, 137, (2005).
17 S. B. Hsu and Y. T. Yang, “Theory of a microfluidic serial dilution bioreactor,” J. Math. Biol.
18 Guo-Yue Gu, Yi-Wei Lee, Chih-Chung Chiang, and Ya-Tang Yang, “A nanoliter microfluidic serial dilution bioreactor,” Biomicrofluidics 9, 044126, (2015).
19 S. S. Pylyugin and P. Waltman, “The simple chemostat with wall growth,” S.I.A.M. J. Appl. Math. 59, 1552, (1999).