簡易檢索 / 詳目顯示

研究生: 江庭蔚
Ting-Wei Jiang
論文名稱: Psudomonas putida 酯解酶與 DL-ATIA 受質之蛋白質結構分析
Crystal structure and Analysis of esterase complex with DL-ATIA from Psudomonas putida
指導教授: 呂平江
Ping-Ching Lyu
陳俊榮
Chun-Jung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 45
中文關鍵詞: esterasecomplexDL-ATIA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Pseudomonas putida esterase catalyzes the stereoselective hydrolysis of DL-ATIA to produce DAT, which is a key intermediate for synthesis of angiotensin-converting enzyme inhibitor. The crystal structure of esterase from Pseudomonas putida complex with DL-ATIA has been determined at a resolution of 2.9 Å in space group P212121, showing a characteristic α/β hydrolase fold and the DL-ATIA substrates binding information. The structure of Pseudomonas putida esterase is a timer in the asymmetry unit and there is one gorge in each monomer. The electron density shows the conserved catalytic triad active site and the entry of the binding pocket. In the Ser-His-Asp triad, the strongest stablizing interaction are three hydrogen bonds: (DL-ATIA)N-H...C=O(Ser97), 3.19Å;(His256)N-H...O=C(DL-ATIA), 3.49 Å; (His256)N-H...C=O(Asp227), 2.62 Å. The X-ray structure of PpEST reveals a narrow entry of the pocket. Several hydrophobic residues form the pocket and limit the size of the entry of the pocket, including Ile229 and Phe146.
    Keywords: PpEST; complex structure; catalytic triad; DL-ATIA


    Table of Contents CHAPTER 1 INTRODUCTION 1 1.1 Introduction of esterase 1 1.2 α/β hydrolase fold 2 1.3 Catalytic triad in serine protease 2 1.4 Substrate 3 CHAPTER 2 MATERIALS AND METHODS 5 2.1 Crystallization 5 2.2 Molecular Replacement 5 2.3 X-ray Data Collection and Process 5 2.4 Structure Determination and Refinement 6 CHAPTER 3 RESULTS AND DISCUSSIONS 8 3.1 EST monomer structure 8 3.2 EST active site 8 3.3 Complex structure 9 3.4 Substrate specificity 10 3.5 The entry of the pocket 11 CHAPTER 4 CONCLUSIONS 13 Reference 14 Figures and Tables 16 Appendix 29 CHAPTER 1 INTRODUCTION 30 CHAPTER 2 Materials and Methods 32 2.1 Cloning 32 2.2 Ligation 32 2.3 The purification of cinnamoyl-CoA reductase from rice 32 2.4 Crystallization 33 CHAPTER 3 Results and Discussions 34 CHAPTER 4 Conclusions 35 Reference 36 Figures and Tables 38 List of figures and tables FIGURE 1 The catalytic mechanism of serine protease 16 FIGURE 2 EST catalyzes the stereoselective hydrolysis of DL-MATI and DL-ATIA to produce DAT 17 FIGURE 3 Structure of the EST with DL-ATIA which exist in trimer form 18 FIGURE 4 α /ß canonical hydrolase fold 19 FIGURE 5 The DL-ATIA is surrounded by the hydrophobic residues 20 FIGURE 6 A comparison of b-factor lable structure 21 FIGURE 7 The real position of substrate in DL-ATIA-EST 22 FIGURE 8 Active-site overlap of PpEST and PFE 23 FIGURE 9 The slab views show that the entry of PFE and PpEST 24 FIGURE 10 The electrostatic surface of EST 25 FIGURE 11 The entry of the pocket is shown in the slab view 26 FIGURE 12 Lignin biosynthetic pathway 38 FIGURE 13 Comparison with different cycles 39 FIGURE 14 Degradation of recombinant CCR 40 FIGURE 15 The time course experiment 41 FIGURE 16 The precipitant was collected to show in SDS-PAGE 42 FIGURE 17 The recombinant and fusion-like protein after expression 43 FIGURE 18 The fraction from different peaks 44 Table 1 Crystal diffraction and structural statistics of EST 27 Table 2 Substrate specificity of EST toward linear esters 28 Table 3 PCR condition 45 Table 4 Primers 45

    Reference
    1. D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, M. Harel, S. J. Remington, I. Silman, J. Schrag, J. L. Sussman, K. H. G. Verchueren, and A. Goldman. 1992. The alpha/belta hydrolase fold. Protein Eng. 5:197-211.
    2. T. Samayama, M. Tsukamoto, T. Sasagawa, S. Naruto, J. Matsumoto, and H. Uno. 1989. An improved optical resolution of 3-acetylthio-2-methylpropionic acid by use of a new chiral amine, N-isopropyl (phenylalaninol). Chem. Pharm. Bull. 37:1382-1383.
    3. S.Y. Shaw, Y.J. Chen, J.J. Ou and L. Ho. 2006. Journal of Molecular Catalysis B: Enzymatic 38:163-170.
    4. C. Branden, J. Tooze. 1999. Introduction to Protein Structure, Second Edition. 203-204.
    5. Okuda, CRC Press, Boca Raton, Fla. H. 1991. A study of enzymes :563-577
    6. P. Heikinheimo, A. Goldman, C. Jeffries, and D. W. Ollis. 1999. Of barn owls and bankers: a lush variety of alpha/belta hydrolases. Structure 7:141-146.
    7. S. Brenner, 1988. The molecular evolution of genes and proteins: a tale of two serines. Nature 334:528-530.
    8. G. Dodson, and A. Woldawer. 1998. Catalytic triads and their relatives. Trends Biochem. Sci. 23:347-352.
    9. L. Hedstrom 2002. Serine proteases mechanism and specificity. Chem. Rev. 102:4501-4523.
    10. R. Verger 1997. Interfacial activation of lipases: fact and artifacts. Trends Biotechnol. 15:32-38.
    11. L.Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, M. Harel, S. James Remington, I. Silman, J. Schrag, Joel L.Sussman, Koen H.G.Verschueren and A. Goldman. 1992. alpha/belta hydrolase fold. Protein Engineering vol.5: 197-211.
    12. B. W. Matthews, P. B. Sigler, R. Henderson and D. M. Blow. 1967. Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature 214 : 652–655.
    13. G. Dodsona and A. Wlodawerb. 1998. catalytic triads and their relatives. Trends Biochem. Sci. 23:347-352
    14. T. Samayama, M. Tsukamoto, T. Sasagawa, S. Naruto, J. Matsumoto, and H. Uno. 1989. An improved optical resolution of 3-acetylthio-2-methylpropionic acid by use of a new chiral amine, N-isopropyl (phenylalaninol). Chem. Pharm. Bull. 37:1382-1383.
    15. M. Shimazaki, J. Hasegawa, K. Kan, K. Nomura, Y. Nose, H. Kondo, T. Ohashi, and K. Watanabe. 1982. Synthesis of captopril from an optically active ß-hydroxy acid. Chem. Pharm. Bull. 30:3139-3146.
    16. A. Sakimae, A. Hosoi, E. Kobayashi, N. Ohsuga, R. Numazawa, I. Watanabe, and H. Ohnishi. 1992. Screening of microorganisms producing D-ß-acetylthioisobutyric acid from methyl DL-ß-acetylthioisobutyrate. Biosci. Biotech. Biochem. 56:1252-1256.
    17. Q.M. Gu, D.R. Reddy and C.J. Sih. 1986.Enzymatic reactions in organic media. Tetrahedron Lett. 27 : 5203.
    18. D. Bianchi and P. Cesti. 1990. Lipase-catalyzed stereoselective thiotransesterification of mercaptoesters. J. Org. Chem. 55:5657.
    19. A. Sakimae, A. Hosoi, E. Kobayashi, N. Ohsuga, R. Numazawa, I. Watanabe and H. Ohnishi, Biosci. 1992. Cloning and expression of a novel esterase gene cpoA from Burkholderia cepacia. Biotechnol. Biochem. 56:1252.
    20. K. Honda, M. Kataoka and S. Shimizu, Appl. 2002. Purification and characterization of a novel esterase promising for the production of useful compounds from Microbacterium. Microbiol. Biotechnol. 60: 288.
    21. F. Elmi, H.-T. Lee, J.-Y. Huang, Y.-C. Hsieh, Y.-L. Wang, Y.-J. Chen, S.-Y. Shaw, and C.-J. Chen. 2005. Stereoselective Esterase from Pseudomonas putida IFO12996 Reveals alpha/beta Hydrolase Folds for D-ß-Acetylthioisobutyric Acid Synthesis. J. bact.:8470-8476
    22. M. Holmquist. 2000. Alpha/Beta hydrolase fold enzymes structure, function and mechanism: 209-235
    23. E. Henke and U.T. Bornscheuer. 1999. Assay for synthesis activity of hydrolases. J. Biol. Chem. 380, 1029-1033
    24. D. Cheeseman, A. Tocilj, S. Park, D. Schrag and J. Kazlauskas. 2004. Structure of an aryl esterase from Pseudomonas fluorescens. Acta Cryst. D. 60, 1237-1243

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE