簡易檢索 / 詳目顯示

研究生: 劉品均
Liu, Pin-Jiun
論文名稱: 食用油及白葡萄酒之核磁共振光譜法種類分析及氣相層析同位素比質譜法產地鑑定
NMR Variety Analysis and GC-IRMS Origin Identification of Edible Oils and White Wines
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
Huang, Shang-Da
饒達仁
Yao, Da-Jeng
林志城
Lin, Chih-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 280
中文關鍵詞: 食用油白葡萄酒核磁共振光譜儀氣相層析同位素比質譜儀脂肪酸調合油
外文關鍵詞: edible oil, white wine, NMR, GC-IRMS, fatty acid, blended oil
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩部分:食用油以及白葡萄酒。第一部分使用核磁共振光譜儀(NMR)與氣相層析同位素比質譜儀(GC-IRMS)對226件食用油分析;第二部分為第一部分的延伸,為了從複雜的混合物中建造出模型,除了使用前述兩者儀器外,另外還有使用氣相層析質譜儀(GC-MS)對23個白葡萄酒進行分析。
    第一部分以NMR分析食用油不需要複雜的前處理步驟,即可快速計算出216個油樣之飽和脂肪酸、單元不飽和脂肪酸、多元不飽和脂肪酸的比例關係,接著搭配階層式分群法以及主成分分析建立完整的單一油種模型,用以識別油種,並使用列舉法計算出調合之組成比例油比例。亦可利用NMR方法計算出10個魚油中的EPA以及DHP含量。最後使用線上衍生GC-IRMS,求得脂肪酸甲脂之碳同位素比,用以鑑定豬油之產源。
    在第二部分,雖然白葡萄酒的複雜度遠甚於油,但本研究經過簡單的前處理步驟後,使用NMR與固相微萃取暨氣相層析質譜儀,並搭配變異數分析成功建立白葡萄酒葡萄品種的模型。並於GC-IRMS中,使用固相微萃取的方式快速測得乙醇碳同位素比,並進行產地探討。


    This research is mainly divided into two parts: edible oil and white wine. In the first part, we applied nuclear magnetic resonance (NMR) and gas chromatography-isotope ratio mass spectrometer (GC-IRMS) to analyze 226 edible oils. The second part is the extension of the first part. In order to build a model from a complicated mixture, in addition to the two instruments mentioned above, there are also 23 white wines analyzed by gas chromatography-mass spectrometer (GC-MS).
    In the first part, NMR analysis of edible oil can quickly calculate the ratio of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids in 216 oil samples without complicated pretreatment steps, followed by hierarchical grouping and principal components. The analysis establishes a complete single oil model to identify the oil species and uses the enumeration method to calculate the ratio of the proportion of the blended oil. Further, a new calculation method was used for NMR to successfully calculate the EPA and DHP contents in 10 fish oils. Finally, GC-IRMS combined with online derivatization was used to obtain the carbon isotope ratio of the fatty acid methyl ester, and this was used to identify the source of lard oil.
    In the second part, although the complexity of white wine is much greater than that of oil, after a simple pretreatment, With both NMR and solid-phase microextraction-GC-MS applied to the analysis of variance, models of a white wine grape varieties were achieved. Next, the carbon isotope ratio of ethanol was quickly determined by GC-IRMS combined with solid-phase microextraction, and the origin was discussed.

    目錄 I 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 油脂概論 3 1-2-1 油脂的組成 3 1-2-2 油脂的分類 3 1-3 脂肪酸 4 1-3-1 飽和脂肪酸 6 1-3-2 單元不飽和脂肪酸 6 1-3-3 多元不飽和脂肪酸 7 1-4 白葡萄酒簡介 8 1-4-1 葡萄的組成 8 1-4-2 白葡萄酒的種類 10 1-5 碳同位素比分布 12 1-5-1 C3植物 13 1-5-2 C4植物 15 1-6 固相微萃取法 16 1-6-1 固相微萃取法原理 17 1-6-2 固相微萃取法模式 18 1-6-3 固相微萃取法影響因子 21 1-7 儀器原理 28 1-7-1 核磁共振光譜儀 28 1-7-2 氣相層析同位素比質譜儀 29 1-7-3 氣相層析四極柱質譜儀 32 1-8 主成分分析 34 1-9 群集分析 35 1-10 變異數分析 36 第二章 食用油於核磁共振光譜之分析 38 2-1 前言 38 2-1-1 文獻回顧 38 2-1-2 實驗原理 39 2-2 實驗部分 42 2-2-1 樣品來源 42 2-2-2 實驗流程 50 2-2-3 實驗設備 51 2-2-4 實驗藥品 51 2-3 結果與討論 51 2-3-1 單一油種脂肪酸比例 51 2-3-2 動物油主成分分析 70 2-3-3 魚油 73 2-3-4 單一油種模型之建立 77 2-3-5 調和油比例計算 82 第三章 食用油之碳同位素比分析 89 3-1 前言 89 3-2 實驗部分 90 3-2-1 樣品來源 90 3-2-2 實驗流程 90 3-2-3 線上衍伸法 91 3-2-4 實驗設備 91 3-2-5 調機 92 3-2-6 儀器參數設定 94 3-2-7 實驗藥品 95 3-3 結果與討論 95 3-3-1 脂肪酸甲脂之碳同位素比 95 3-3-2 橄欖油產地鑑定 104 3-3-3 豬油來源追蹤 106 第四章 白葡萄酒於核磁共振光譜分析 108 4-1 前言 108 4-2 實驗部分 108 4-2-1 樣品來源 108 4-2-2 實驗流程 110 4-2-3 實驗設備以及器材 111 4-2-4 實驗藥品 112 4-3 結果與討論 112 4-3-1 白葡萄酒之核磁共振光譜 112 4-3-2 白葡萄酒品種模型建立 115 第五章 白葡萄酒之碳同位素比分析 119 5-1 前言 119 5-2 實驗部分 119 5-2-1 樣品來源 119 5-2-2 實驗流程 120 5-2-3 實驗設備 120 5-2-4 調機 121 5-2-5 儀器參數設定 121 5-2-6 實驗藥品 121 5-3 結果與討論 121 5-3-1 白葡萄酒乙醇之碳同位素比 121 5-3-2 同種白葡萄酒之產地鑑定 127 5-3-3 白葡萄酒局部區域碳同位素比探討 131 第六章 白葡萄酒中揮發性有機化合物分析 134 6-1 前言 134 6-2 實驗部分 134 6-2-1 樣品來源 134 6-2-3 實驗設備 136 6-2-4 儀器參數設定 136 6-2-5 實驗藥品 136 6-3 結果與討論 138 6-3-1 揮發性物質之氣相層析圖譜分析 138 6-3-2 白葡萄酒品種模型建立 141 6-3-3 氣相層析質譜儀與核磁共振光譜儀的結合 144 第七章 結論與展望 154 第八章 參考文獻 155 附錄一  食用油核磁共振光譜圖 169 附錄二 白葡萄酒於核磁共振光譜分析 245 附錄三 白葡萄酒總離子層析圖 257 附錄四 白葡萄酒VOCs分析 269

    1. McKinley Health Center, HEd. III-232
    https://mckinley.illinois.edu/sites/default/files/docs/macronutrients.pdf
    Accessed 2018/6/6

    2. Chowdhury, K., Banu, L. A., Khan, S., & Latif, A. (2007). Studies on the fatty acid composition of edible oil. Bangladesh Journal of Scientific and Industrial Research, 42(3), 311-316.

    3. SELF Nutrition Data
    http://nutritiondata.self.com/topics/fatty-acids
    Accessed 2018/6/6

    4. Sacks, F. M., Lichtenstein, A. H., Wu, J. H., Appel, L. J., Creager, M. A., Kris-Etherton, P. M., Miller, M., Rimm, E. B., Rudel, L. L., & Robinson, J. G. (2017). Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation, 136(3), e1-e23.

    5. Vessby, B., Uusitupa, M., Hermansen, K., Riccardi, G., Rivellese, A. A., Tapsell, L. C., Nälsén, C., Berglund, L., Louheranta, A., & Rasmussen, B. (2001). Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia, 44(3), 312-319.

    6. Kien, C. L., Bunn, J. Y., Tompkins, C. L., Dumas, J. A., Crain, K. I., Ebenstein, D. B., Koves, T. R., & Muoio, D. M. (2013). Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood–. The American journal of clinical nutrition, 97(4), 689-697.

    7. Lovejoy, J. C. (2002). The influence of dietary fat on insulin resistance. Current diabetes reports, 2(5), 435-440.

    8. Fukuchi, S., Hamaguchi, K., Seike, M., Himeno, K., Sakata, T., & Yoshimatsu, H. (2004). Role of fatty acid composition in the development of metabolic disorders in sucrose-induced obese rats. Experimental Biology and Medicine, 229(6), 486-493.

    9. Ruxton, C., Calder, P., Reed, S. C., & Simpson, M. (2005). The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutrition Research Reviews, 18(1), 113-129.

    10. Grosso, G., Galvano, F., Marventano, S., Malaguarnera, M., Bucolo, C., Drago, F., & Caraci, F. (2014). Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxidative medicine and cellular longevity, 2014.

    11. Kris-Etherton, P. M., Harris, W. S., Appel, L. J., American Heart Association, N. C., & Committee, N. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106(21), 2747-2755.

    12. Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & pharmacotherapy, 56(8), 365-379.

    13. Willett, W. C. (2007). The role of dietary n-6 fatty acids in the prevention of cardiovascular disease. Journal of Cardiovascular Medicine, 8, S42-S45.

    14. Deutsch, D. (1975). Musical illusions. Scientific American, 233(4), 92-105.

    15. Section of a grape berry with white juice and coloured skin
    https://en.wikipedia.org/wiki/White_wine#/media/File:Raisin_noir_%C3%A0_jus_blanc.png
    Accessed 2018/6/6

    16. Sarni-Manchado, P., Cheynier, V., & Moutounet, M. (1999). Interactions of grape seed tannins with salivary proteins. Journal of Agricultural and food Chemistry, 47(1), 42-47.
    17. Paul, H. W. (2002). Science, vine and wine in modern France: Cambridge University Press.

    18. Chardonnay
    http://cellarbythequay.co.uk/grape-misconceptions-no-1/
    Accessed 2018/6/6

    19. Moscato
    http://www.vinidipuglia.com/index.php/en/principal-white-grapes
    Accessed 2018/6/6

    20. Riesling
    http://somimag.com/somi-cellars-reisling/
    Accessed 2018/6/6

    21. Carbon Cycle
    https://www.ck12.org/biology/carbon-cycle/lesson/Carbon-Cycle-BIO/
    Accessed 2018/6/6

    22. Meier-Augenstein, W. (1999). Applied gas chromatography coupled to isotope ratio mass spectrometry. Journal of Chromatography A, 842(1-2), 351-371.

    23. Singh, J., Pandey, P., James, D., Chandrasekhar, K., Achary, V. M. M., Kaul, T., Tripathy, B. C., & Reddy, M. K. (2014). Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnology Journal, 12(9), 1217-1230.

    24. Calvin-Cycle
    https://www.coursepics.com/lesson/calvin-cycle/
    Accessed 2018/6/6

    25. Giussani, L. M., Cota‐Sánchez, J. H., Zuloaga, F. O., & Kellogg, E. A. (2001). A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. American Journal of Botany, 88(11), 1993-2012.

    26. Sage, R. F. (2016). A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. Journal of experimental botany, 67(14), 4039-4056.

    27. Hatch-Slack Cycle picture
    https://www.majordifferences.com/2013/05/difference-between-c3-and-c4-cycle.html#.WxY8u-6WTIV
    Accessed 2018/6/6

    28. Arthur, C. L., & Pawliszyn, J. (1990). Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem, 62(19), 2145-2148.

    29. Vas, G., & Vekey, K. (2004). Solid‐phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of mass spectrometry, 39(3), 233-254.

    30. Holadová, K., Prokůpková, G., Hajšlová, J., & Poustka, J. (2007). Headspace solid-phase microextraction of phthalic acid esters from vegetable oil employing solvent based matrix modification. Analytica chimica acta, 582(1), 24-33.

    31. Pawliszyn, J. (1997). Solid phase microextraction: theory and practice: John Wiley & Sons.

    32. Fucci, N., De Giovanni, N., & Chiarotti, M. (2003). Simultaneous detection of some drugs of abuse in saliva samples by SPME technique. Forensic Science International, 134(1), 40-45.

    33. Kataoka, H., Lord, H. L., & Pawliszyn, J. (2000). Applications of solid-phase microextraction in food analysis. Journal of Chromatography A, 880(1-2), 35-62.

    34. Basheer, C., & Lee, H. K. (2004). Hollow fiber membrane-protected solid-phase microextraction of triazine herbicides in bovine milk and sewage sludge samples. Journal of Chromatography A, 1047(2), 189-194.

    35. Radványi, D., Gere, A., Jókai, Z., & Fodor, P. (2015). Rapid evaluation technique to differentiate mushroom disease-related moulds by detecting microbial volatile organic compounds using HS-SPME-GC-MS. Analytical and Bioanalytical Chemistry, 407(2), 537-545.

    36. Górecki, T., Yu, X., & Pawliszyn, J. (1999). Theory of analyte extraction by selected porous polymer SPME fibres. Analyst, 124(5), 643-649.

    37. Selection Guide for Supelco SPME Fibers- Sigma-Aldrich
    https://www.sigmaaldrich.com/technical-documents/articles/analytical/selecting-spme-fibers.html
    Accessed 2018/6/6

    38. Solid Phase Microextraction Fiber Assemblies- Sigma-Aldrich
    https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/General_Information/1/t794123.pdf
    Accessed 2018/6/6
    39. Bulletin 929 - Sigma-Aldrich
    https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Supelco/Bulletin/11143.pdf
    Accessed 2018/6/6

    40. SPME Troubleshooting Guide - Bulletin 928 - Sigma-Aldrich
    https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Supelco/General_Information/1/t101928.pdf
    Accessed 2018/6/6

    41. Rocha, S., Ramalheira, V., Barros, A., Delgadillo, I., & Coimbra, M. A. (2001). Headspace solid phase microextraction (SPME) analysis of flavor compounds in wines. Effect of the matrix volatile composition in the relative response factors in a wine model. Journal of Agricultural and food Chemistry, 49(11), 5142-5151.

    42. Buchholz, K. D., & Pawliszyn, J. (1994). Optimization of solid-phase microextraction conditions for determination of phenols. Anal Chem, 66(1), 160-167.

    43. Santos, B. R., Elias, A. M., & Coelho, G. L. (2016). Use of HS-SPME for analysis of the influence of salt concentration and temperature on the activity coefficient at infinite dilution of ethanol-water-salt systems. Fluid Phase Equilibria, 429, 21-26.

    44. The Nobel Prize in Physics 1952
    https://www.nobelprize.org/nobel_prizes/physics/laureates/1952/
    Accessed 2018/6/6

    45. Levitt, M. H. (2001). Spin dynamics. Jon Wiley and Sons, 196.

    46. Schmidt, T. C., Zwank, L., Elsner, M., Berg, M., Meckenstock, R. U., & Haderlein, S. B. (2004). Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Analytical and Bioanalytical Chemistry, 378(2), 283-300.

    47. Budzikiewicz, H., & Grigsby, R. D. (2006). Mass spectrometry and isotopes: a century of research and discussion. Mass spectrometry reviews, 25(1), 146-157.

    48. Bluck, L., & Coward, W. (2004). The application of a simple algorithm to isotope ratio measurements by gas chromatography combustion isotope ratio mass spectrometry. Measurement Science and Technology, 15(2), N21.

    49. Muccio, Z., & Jackson, G. P. (2009). Isotope ratio mass spectrometry. Analyst, 134(2), 213-222.

    50. PDB
    https://fieldtrips.earth.lsa.umich.edu/?p=1789
    Accessed 2018/6/6
    51. Sessions, A. L. (2006). Isotope‐ratio detection for gas chromatography. Journal of separation science, 29(12), 1946-1961.

    52. Hübschmann, H.-J. (2015). Handbook of GC-MS: fundamentals and applications: John Wiley & Sons.

    53. GC-MS picture
    https://commons.wikimedia.org/wiki/File:Gcms_schematic.gif
    Accessed 2018/6/6

    54. quadrupole picture
    http://cbc.chem.arizona.edu/massspec/intro_html/massins.gif
    Accessed 2018/6/6

    55. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.

    56. A tutorial on Principal Components Analysis
    http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
    Accessed 2018/6/6

    57. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.

    58. Bailey, K. (1994). Numerical taxonomy and cluster analysis. Typologies and Taxonomies, 34, 24.

    59. Tryon, R. C. (1939). Cluster analysis: Correlation profile and orthometric (factor) analysis for the isolation of unities in mind and personality: Edwards brother, Incorporated, lithoprinters and publishers.

    60. Estivill-Castro, V. (2002). Why so many clustering algorithms: a position paper. ACM SIGKDD explorations newsletter, 4(1), 65-75.
    61. HCA picture
    https://en.wikipedia.org/wiki/Hierarchical_clustering
    Accessed 2018/6/6

    62. Miller Jr, R. G. (1997). Beyond ANOVA: basics of applied statistics: Chapman and Hall/CRC.

    63. 食品中脂肪酸之檢驗方法 https://www.fda.gov.tw/upload/133/Content/2013102417003579846.pdf
    Accessed 2018/6/6

    64. Sacchi, R., Patumi, M., Fontanazza, G., Barone, P., Fiordiponti, P., Mannina, L., Rossi, E., & Segre, A. (1996). A high-field 1 H nuclear magnetic resonance study of the minor components in virgin olive oils. Journal of the American Oil Chemists’ Society, 73(6), 747-758.

    65. Fauhl, C., Reniero, F., & Guillou, C. (2000). 1H NMR as a tool for the analysis of mixtures of virgin olive oil with oils of different botanical origin. Magnetic Resonance in Chemistry, 38(6), 436-443.

    66. Zamora, R., Alba, V., & Hidalgo, F. J. (2001). Use of high‐resolution 13C nuclear magnetic resonance spectroscopy for the screening of virgin olive oils. Journal of the American Oil Chemists' Society, 78(1), 89-94.

    67. Jakes, W., Gerdova, A., Defernez, M., Watson, A., McCallum, C., Limer, E., Colquhoun, I., Williamson, D., & Kemsley, E. (2015). Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy. Food chemistry, 175, 1-9.

    68. Gerdova, A., Defernez, M., Jakes, W., Limer, E., McCallum, C., Nott, K., Parker, T., Rigby, N., Sagidullin, A., & Watson, A. (2015). Quantitative NMR. Magnetic Resonance in Food Science: Defining Food by Magnetic Resonance. In): Royal Society of Chemistry.

    69. California State Polytechnic University, Pomona 1H NMR Chemical Shifts
    https://www.cpp.edu/~lsstarkey/courses/NMR/NMRshifts1H-general.pdf
    Accessed 2018/6/6

    70. 龔哲民, 核磁共振光譜法及氣相層析同位素比質譜法於食用油之鑑定, 國立清華大學碩士論文, 2016

    71. Nestor, G., Bankefors, J., Schlechtriem, C., Brännäs, E., Pickova, J., & Sandström, C. (2010). High-resolution 1H magic angle spinning NMR spectroscopy of intact Arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n− 3 fatty acids, EPA and DHA. Journal of Agricultural and food Chemistry, 58(20), 10799-10803.

    72. Janssens, G., Mangelinckx, S., Courtheyn, D., Prévost, S. p., De Poorter, G., De Kimpe, N., & Le Bizec, B. (2013). Application of gas chromatography–mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle. Journal of Agricultural and food Chemistry, 61(30), 7242-7249.

    73. Meier-Augenstein, W. (1999). Applied gas chromatography coupled to isotope ratio mass spectrometry. Journal of Chromatography A, 842(1-2), 351-371.

    74. Schipilliti, L., Dugo, P., Bonaccorsi, I., & Mondello, L. (2012). Authenticity control on lemon essential oils employing gas chromatography–combustion-isotope ratio mass spectrometry (GC–C-IRMS). Food chemistry, 131(4), 1523-1530.

    75. Baum, A., Lu, Y., Muccio, Z., Jackson, G. P., & Harrington, P. B. (2010). Differentiation Between Origins of Extra Virgin Olive Oils by GC-C-IRMS Using Principal Component Analysis, Linear Discriminant Analysis, and Hierarchical Cluster Analysis-The authors classify extra virgin olive oils from Portugal and Turkey using GC-C-IRMS to evaluate the isotope ratios of the fatty acid methyl esters (FAMEs) extracted from the oils. Spectroscopy, 25(2), 40.

    76. Kelly, S. D., & Rhodes, C. (2002). Emerging techniques in vegetable oil analysis using stable isotope ratio mass spectrometry. Grasas y Aceites, 53(1), 34-44.

    77. Martínez-Castro, I., Alonso, L., & Juárez, M. (1986). Gas chromatographic analysis of free fatty acids and glycerides of milk fat using tetramethylammonium hydroxide as catalyste. Chromatographia, 21(1), 37-40.

    78. Jung, J., Puff, B., Eberts, T., Hener, U., & Mosandl, A. (2007). Reductive ester cleavage of acyl glycerides–GC-C/P-IRMS measurements of glycerol and fatty alcohols. European Food Research and Technology, 225(2), 191-197.

    79. Meier-Augenstein, W. (2002). Stable isotope analysis of fatty acids by gas chromatography–isotope ratio mass spectrometry. Analytica chimica acta, 465(1-2), 63-79.

    80. Panetta, R. J., & Jahren, A. H. (2011). Single‐step transesterification with simultaneous concentration and stable isotope analysis of fatty acid methyl esters by gas chromatography‐combustion‐isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 25(10), 1373-1381.

    81. Woodbury, S. E., Evershed, R. P., & Barry Rossell, J. (1998). Purity assessments of major vegetable oils based on δ13C values of individual fatty acids. Journal of the American Oil Chemists' Society, 75(3), 371-379.
    82. Steele, V. J., Stern, B., & Stott, A. W. (2010). Olive oil or lard?: distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography combustion isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 24(23), 3478-3484.

    83. Mannion, D. T., Furey, A., & Kilcawley, K. N. (2016). Comparison and validation of 2 analytical methods for the determination of free fatty acids in dairy products by gas chromatography with flame ionization detection. Journal of dairy science, 99(7), 5047-5063.

    84. Khan, N. S., Vane, C. H., Horton, B. P., Hillier, C., Riding, J. B., & Kendrick, C. P. (2015). The application of δ13C, TOC and C/N geochemistry to reconstruct Holocene relative sea levels and paleoenvironments in the Thames Estuary, UK. Journal of Quaternary Science, 30(5), 417-433.

    85. Spangenberg, J. E., Macko, S. A., & Hunziker, J. (1998). Characterization of olive oil by carbon isotope analysis of individual fatty acids: Implications for authentication. Journal of Agricultural and food Chemistry, 46(10), 4179-4184.

    86. 食品中脂肪酸之檢驗方法https://www.fda.gov.tw/tc/includes/GetFile.ashx?mid=133&id=8261&t=s
    Accessed 2018/6/6

    87. Alañón, M., Pérez-Coello, M., & Marina, M. (2015). Wine science in the metabolomics era. TrAC Trends in Analytical Chemistry, 74, 1-20.

    88. Pereira, G. E., Gaudillere, J.-P., Van Leeuwen, C., Hilbert, G., Maucourt, M., Deborde, C., Moing, A., & Rolin, D. (2007). 1 H-NMR metabolic profiling of wines from three cultivans, three soil types and two contrasting vintages. OENO One, 41(2), 103-109.

    89. Nilsson, M., Duarte, I. F., Almeida, C., Delgadillo, I., Goodfellow, B. J., Gil, A. M., & Morris, G. A. (2004). High-resolution NMR and diffusion-ordered spectroscopy of port wine. Journal of Agricultural and food Chemistry, 52(12), 3736-3743.

    90. Martin-Pastor, M., Guitian, E., & Riguera, R. (2016). Joint NMR and solid-phase microextraction–gas chromatography chemometric approach for very complex mixtures: grape and zone identification in wines. Anal Chem, 88(12), 6239-6246.

    91. Ali, K., Maltese, F., Toepfer, R., Choi, Y. H., & Verpoorte, R. (2011). Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses. Journal of Biomolecular NMR, 49(3-4), 255-266.

    92. Mazzei, P., Francesca, N., Moschetti, G., & Piccolo, A. (2010). NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes. Analytica chimica acta, 673(2), 167-172.

    93. López-Rituerto, E., Savorani, F., Avenoza, A., Busto, J. s. H., Peregrina, J. s. M., & Engelsen, S. B. (2012). Investigations of La Rioja terroir for wine production using 1H NMR metabolomics. Journal of Agricultural and food Chemistry, 60(13), 3452-3461.

    94. Son, H.-S., Kim, K. M., Van Den Berg, F., Hwang, G.-S., Park, W.-M., Lee, C.-H., & Hong, Y.-S. (2008). 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. Journal of Agricultural and food Chemistry, 56(17), 8007-8016.

    95. Son, H.-S., Hwang, G.-S., Ahn, H.-J., Park, W.-M., Lee, C.-H., & Hong, Y.-S. (2009). Characterization of wines from grape varieties through multivariate statistical analysis of 1H NMR spectroscopic data. Food Research International, 42(10), 1483-1491.
    96. Košir, I. J., Kocjančič, M., Ogrinc, N., & Kidrič, J. (2001). Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of chaptalisation and geographical origin of wines (the example of Slovenian wines). Analytica chimica acta, 429(2), 195-206.

    97. Cabañero, A. I., Recio, J. L., & Rupérez, M. (2008). Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization. Rapid Communications in Mass Spectrometry, 22(20), 3111-3118.

    98. Rhodes, C. N., Heaton, K., Goodall, I., & Brereton, P. A. (2009). Gas chromatography carbon isotope ratio mass spectrometry applied to the detection of neutral alcohol in Scotch whisky: an internal reference approach. Food chemistry, 114(2), 697-701.

    99. Spitzke, M. E., & Fauhl-Hassek, C. (2010). Determination of the 13C/12C ratios of ethanol and higher alcohols in wine by GC-C-IRMS analysis. European Food Research and Technology, 231(2), 247-257.

    100. Guyon, F., Gaillard, L., Salagoïty, M.-H., & Médina, B. (2011). Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication. Analytical and Bioanalytical Chemistry, 401(5), 1551.

    101. 陳昱芬, 米酒成分分析與產地鑑定, 國立清華大學碩士論文, 2014

    102. Carrillo, J. D., Garrido-López, Á., & Tena, M. T. (2006). Determination of volatile oak compounds in wine by headspace solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1102(1-2), 25-36.

    103. Liu, M., Zeng, Z., & Tian, Y. (2005). Elimination of matrix effects for headspace solid-phase microextraction of important volatile compounds in red wine using a novel coating. Analytica chimica acta, 540(2), 341-353.

    104. Pino, J. A., & Queris, O. (2010). Analysis of volatile compounds of pineapple wine using solid-phase microextraction techniques. Food chemistry, 122(4), 1241-1246.

    105. Barros, E. P., Moreira, N., Pereira, G. E., Leite, S. G. F., Rezende, C. M., & de Pinho, P. G. (2012). Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Talanta, 101, 177-186.

    QR CODE