研究生: |
謝旻融 Hsieh, Ming-Jung |
---|---|
論文名稱: |
建構與改良Wick-in needle壓力監測系統於小鼠腫瘤內壓量測之應用 Develop an Advanced Wick-in Needle Pressure Monitor System for Interstitial Fluid Pressure Measurement of Mice Tumor Model |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
姜文軒
Chiang, Wen-Hsuan 胡尚秀 Hu, Shang-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 壓力量測 、間質內壓 、腫瘤微環境 |
外文關鍵詞: | Pressure measurement, Wick-in needle, Interstitial fluid pressure, Tumor micro enviroment |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為自製一套方便組裝且精準度高的間質內壓測量系統,除了能夠測量各種液體壓力之外,也能精準地進行小鼠腫瘤模型之間質內壓測量,使在台灣癌症研究中較少被提及的腫瘤間質液內壓測量能受到重視,並與各種治療策略、癌症診斷進行合併探討。
本研究借鑑Wick-in needle技術之原理開發,以壓力傳送器 (Pressure transducer)為主要架構考量,採用量程為0-0.1 bar之微量壓力傳送器做為感測裝置,來符合以偵測小鼠腫瘤間質液壓力為主要使用之規格,透過基本的性能測試例如: 不同密度之溶劑校準、小鼠正常組織間質壓力測量、小鼠腫瘤模型壓力測試等,透過測量證實所組裝之WIN系統之穩定性與準確性,並發現需要改善之問題,最後我們結合較不易產生型變的材質 PE (Polyethylene)用於緩衝液填充管,能夠將受壓端之壓力源以最少的分散傳達至感測端,並以24 G側孔針(O.D.= 0.559 mm, I.D.= 0.381 mm,側孔開於距尖端2 mm管身,長2 mm,寬1/3管周長)作為壓力感受端,以極細之針管刺入腫瘤組織中,維持腫瘤內部封閉性避免大氣沿針管進入平衡內壓,並減少血液與組織液滲出,增加測量數值之真實性,並在側孔針管內部填充適量Nylon fiber,以增加液體介質交換面積增加測量精度。最終本研究架構之WIN系統透過測量小鼠腫瘤模型間質內壓,得到與其他文獻中測量小鼠乳癌 (4T1)皮下腫瘤模型間質內壓相近數值,若能以其他原理之儀器比較,更能印證我們所開發WIN系統的準確度。
The purpose of this study is to develop a set of interstitial fluid pressure (IFP) measurement system that is easy to assemble and highly accurate. In addition to being able to measure various fluid pressures, it is also possible to accurately measure pressure in mouse tumor models. Tumor IFP measurement, which is rarely mentioned in cancer research in Taiwan, could be taken more seriously and combined with various treatment strategies and cancer diagnosis. This study draws on the principle of Wick-in needle technology and considers the pressure transducer as the main framework. A micro-pressure transducer with a range of 0-0.1 bar is used as a sensing device to meet the specifications for detecting the IFP in mice tumor. Through basic performance tests such as: calibration with solvent of different density, IFP measurement in mice normal tissue, IFP test of mice tumor model, etc., the stability and accuracy of assembled WIN system were confirmed by measurement, and there are some problems should be solved. Finally, we combined the sturdy material PE (Polyethylene) for the buffer-filled tube, which can transmit the pressure source from the pressure endpoint to the sensing endpoint completely, and the 24 G needle (O.D.= 0.559 mm, I.D. = 0.381 mm) with a side-hole at 2 mm from the tip. The side-hole size is 2 mm, and 0.585 mm width as a pressure-sensing endpoint, penetrating into the tumor tissue with a very thin needle to maintain the internal sealing of the tumor. With this thin needle, we could also avoid air diffusion into tumor along with track for balancing internal pressure, and reduce the leakage of blood and interstitial fluid. To maintain the measurement accuracy, we filled up the side-hole needle with nylon fibers to increase liquid exchanging surface area. At last, we found the IFP measured by WIN system was similar to the result of other researches in mice breast cancer (4T1) subcutaneous tumor model. The result could enhance the reliability of the WIN system we developed.
1. Korkaya, H.; Liu, S.; Wicha, M. S., Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 2011, 121 (10), 3804-9.
2. Lu, P.; Weaver, V. M.; Werb, Z., The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012, 196 (4), 395-406.
3. Fadnes, H. O.; Reed, R. K.; Aukland, K., Interstitial fluid pressure in rats measured with a modified wick technique. Microvasc Res 1977, 14 (1), 27-36.
4. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000, 100 (1), 57-70.
5. Cancer, A. J. C. o., Breast cancer staging. 2009.
6. Amir, E.; Seruga, B.; Niraula, S.; Carlsson, L.; Ocana, A., Toxicity of Adjuvant Endocrine Therapy in Postmenopausal Breast Cancer Patients: A Systematic Review and Meta-analysis. Jnci-J Natl Cancer I 2011, 103 (17), 1299-1309.
7. Sabatier, R.; Goncalves, A., Pertuzumab (Perjeta (R)) approval in HER2-positive metastatic breast cancers. B Cancer 2014, 101 (7-8), 765-771.
8. Swain, S. M.; Baselga, J.; Kim, S. B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J. M.; Schneeweiss, A.; Heeson, S.; Clark, E.; Ross, G.; Benyunes, M. C.; Cortes, J.; Grp, C. S., Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. New Engl J Med 2015, 372 (8), 724-734.
9. Chen, F.; Zhuang, X.; Lin, L.; Yu, P.; Wang, Y.; Shi, Y.; Hu, G.; Sun, Y., New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 2015, 13, 45.
10. Martinez-Outschoorn, U. E.; Lisanti, M. P., Tumor microenvironment: introduction. Semin Oncol 2014, 41 (2), 145.
11. Yin, H.; Liao, L.; Fang, J., Enhanced Permeability and Retention (EPR) Effect Based Tumor Targeting: The Concept, Application and Prospect. . JSM Clin Oncol Res 2014.
12. Li, F.; Du, Y.; Liu, J.; Sun, H.; Wang, J.; Li, R.; Kim, D.; Hyeon, T.; Ling, D., Responsive Assembly of Upconversion Nanoparticles for pH-Activated and Near-Infrared-Triggered Photodynamic Therapy of Deep Tumors. Adv Mater 2018, 30 (35), e1802808.
13. Borriello, L.; DeClerck, Y. A., [Tumor microenvironment and therapeutic resistance process]. Med Sci (Paris) 2014, 30 (4), 445-51.
14. Danquah, M. K.; Zhang, X. A.; Mahato, R. I., Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev 2011, 63 (8), 623-39.
15. Uhr, J. W.; Pantel, K., Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A 2011, 108 (30), 12396-400.
16. Aguirre-Ghiso, J. A., Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007, 7 (11), 834-46.
17. Evans EB, L. S., New insights into tumor dormancy: Targeting DNA repair pathways. World J Clin Oncol 2015, 80-88.
18. Graham, K.; Unger, E., Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomed 2018, 13, 6049-6058.
19. Kalluri, R.; Zeisberg, M., Fibroblasts in cancer. Nat Rev Cancer 2006, 6 (5), 392-401.
20. Hompland, T.; Ellingsen, C.; Galappathi, K.; Rofstad, E. K., Connective tissue of cervical carcinoma xenografts: associations with tumor hypoxia and interstitial fluid pressure and its assessment by DCE-MRI and DW-MRI. Acta Oncol 2014, 53 (1), 6-15.
21. Hompland, T.; Ellingsen, C.; Ovrebo, K. M.; Rofstad, E. K., Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast-enhanced MRI. Cancer Res 2012, 72 (19), 4899-908.
22. Rofstad, E. K.; Galappathi, K.; Mathiesen, B. S., Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 2014, 16 (7), 586-94.
23. Tufto, I.; Rofstad, E. K., Interstitial fluid pressure and capillary diameter distribution in human melanoma xenografts. Microvasc Res 1999, 58 (3), 205-14.
24. Nicolas-Boluda, A.; Silva, A. K. A.; Fournel, S.; Gazeau, F., Physical oncology: New targets for nanomedicine. Biomaterials 2018, 150, 87-99.
25. Maeda, T.; Sakabe, T.; Sunaga, A.; Sakai, K.; Rivera, A. L.; Keene, D. R.; Sasaki, T.; Stavnezer, E.; Iannotti, J.; Schweitzer, R.; Ilic, D.; Baskaran, H.; Sakai, T., Conversion of mechanical force into TGF-beta-mediated biochemical signals. Curr Biol 2011, 21 (11), 933-41.
26. McAllister, S. S.; Weinberg, R. A., Tumor-host interactions: a far-reaching relationship. J Clin Oncol 2010, 28 (26), 4022-8.
27. Braga, T. T.; Agudelo, J. S.; Camara, N. O., Macrophages During the Fibrotic Process: M2 as Friend and Foe. Front Immunol 2015, 6, 602.
28. Levental, K. R.; Yu, H.; Kass, L.; Lakins, J. N.; Egeblad, M.; Erler, J. T.; Fong, S. F.; Csiszar, K.; Giaccia, A.; Weninger, W.; Yamauchi, M.; Gasser, D. L.; Weaver, V. M., Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139 (5), 891-906.
29. Radisky, E. S.; Radisky, D. C., Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 2010, 15 (2), 201-12.
30. Wagnerand, M.; Wiig, H., Tumor interstitial fluid formation, characterization, and clinical implications. Front Oncol 2015, 5.
31. Hwang, R. F.; Moore, T.; Arumugam, T.; Ramachandran, V.; Amos, K. D.; Rivera, A.; Ji, B.; Evans, D. B.; Logsdon, C. D., Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 2008, 68 (3), 918-26.
32. Voutouri, C.; Polydorou, C.; Papageorgis, P.; Gkretsi, V.; Stylianopoulos, T., Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy. Neoplasia 2016, 18 (12), 732-741.
33. Nieskoski, M. D.; Marra, K.; Gunn, J. R.; Hoopes, P. J.; Doyley, M. M.; Hasan, T.; Trembly, B. S.; Pogue, B. W., Collagen Complexity Spatially Defines Microregions of Total Tissue Pressure in Pancreatic Cancer. Sci Rep 2017, 7 (1), 10093.
34. Rofstad, E. K.; Galappathi, K.; Mathiesen, B. S., Tumor Interstitial Fluid Pressure-A Link between Tumor Hypoxia, Microvascular Density, and Lymph Node Metastasis. Neoplasia 2014, 16 (7), 586-594.
35. Chauhan, V. P.; Boucher, Y.; Ferrone, C. R.; Roberge, S.; Martin, J. D.; Stylianopoulos, T.; Bardeesy, N.; DePinho, R. A.; Padera, T. P.; Munn, L. L.; Jain, R. K., Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 2014, 26 (1), 14-5.
36. Eikenes, L.; Bruland, O. S.; Brekken, C.; Davies, C. D. L., Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Research 2004, 64 (14), 4768-4773.
37. Zheng, X.; Goins, B. A.; Cameron, I. L.; Santoyo, C.; Bao, A.; Frohlich, V. C.; Fullerton, G. D., Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother Pharmacol 2011, 67 (1), 173-82.
38. adyaniazizah, Connective tissue (Collagen).
39. Bentovim, L.; Amarilio, R.; Zelzer, E., HIF1 alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development (vol 139, pg 4473, 2012). Development 2013, 140 (1), 248-248.
40. Meyer, K.; Palmer, J. W., The polysaccharide of the vitreous humor. J Biol Chem 1934, 107 (3), 629-634.
41. Kuo, J. W., Practical aspects of hyaluronan based medical products. CRC/Taylor & Francis: Boca Raton, 2006; p 217 p.
42. Spicer, A. P.; Seldin, M. F.; Olsen, A. S.; Brown, N.; Wells, D. E.; Doggett, N. A.; Itano, N.; Kimata, K.; Inazawa, J.; McDonald, J. A., Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 1997, 41 (3), 493-7.
43. Duncan, R., The dawning era of polymer therapeutics. Nature Reviews Drug Discovery 2003, 2 (5), 347-360.
44. Jiang, D. H.; Liang, J. R.; Noble, P. W., Hyaluronan as an Immune Regulator in Human Diseases. Physiol Rev 2011, 91 (1), 221-264.
45. Torchilin, V. P., Nanocarriers. Pharm Res-Dordr 2007, 24 (12), 2333-2334.
46. Zhu, Y.; Crewe, C.; Scherer, P. E., Hyaluronan in adipose tissue: Beyond dermal filler and therapeutic carrier. Sci Transl Med 2016, 8 (323), 323ps4.
47. Goldberg, R. L.; Toole, B. P., Hyaluronate inhibition of cell proliferation. Arthritis Rheum 1987, 30 (7), 769-78.
48. Hay, E. D., Cell biology of extracellular matrix. 2nd ed.; Plenum Press: New York, 1991; p xvii, 468 p.
49. Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J., Hyaluronic acid (hyaluronan): a review. Vet Med-Czech 2008, 53 (8), 397-411.
50. Penno, M. B.; August, J. T.; Baylin, S. B.; Mabry, M.; Linnoila, R. I.; Lee, V. S.; Croteau, D.; Yang, X. L.; Rosada, C., Expression of CD44 in human lung tumors. Cancer Res 1994, 54 (5), 1381-7.
51. Wei, H. J.; Yin, T.; Zhu, Z.; Shi, P. F.; Tian, Y.; Wang, C. Y., Expression of CD44, CD24 and ESA in pancreatic adenocarcinoma cell lines varies with local microenvironment. Hepatobiliary Pancreat Dis Int 2011, 10 (4), 428-34.
52. Hiscox, S.; Baruha, B.; Smith, C.; Bellerby, R.; Goddard, L.; Jordan, N.; Poghosyan, Z.; Nicholson, R. I.; Barrett-Lee, P.; Gee, J., Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer 2012, 12, 458.
53. Tezel, A.; Fredrickson, G. H., The science of hyaluronic acid dermal fillers. J Cosmet Laser Ther 2008, 10 (1), 35-42.
54. Choi, K. Y.; Chung, H.; Min, K. H.; Yoon, H. Y.; Kim, K.; Park, J. H.; Kwon, I. C.; Jeong, S. Y., Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010, 31 (1), 106-114.
55. Han, H. S.; Choi, K. Y.; Ko, H.; Jeon, J.; Saravanakumar, G.; Suh, Y. D.; Lee, D. S.; Park, J. H., Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. J Control Release 2015, 200, 158-166.
56. Rao, N. V.; Yoon, H. Y.; Han, H. S.; Ko, H.; Son, S.; Lee, M.; Lee, H.; Jo, D. G.; Kang, Y. M.; Park, J. H., Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opin Drug Deliv 2016, 13 (2), 239-52.
57. Itano, N.; Zhuo, L.; Kimata, K., Impact of the hyaluronan-rich tumor microenvironment on cancer initiation and progression. Cancer Sci 2008, 99 (9), 1720-5.
58. McCarthy, J. B.; El-Ashry, D.; Turley, E. A., Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018, 6, 48.
59. Zhang, Z.; Tao, D.; Zhang, P.; Liu, X.; Zhang, Y.; Cheng, J.; Yuan, H.; Liu, L.; Jiang, H., Hyaluronan synthase 2 expressed by cancer-associated fibroblasts promotes oral cancer invasion. J Exp Clin Cancer Res 2016, 35 (1), 181.
60. Fisher, G. J., Cancer resistance, high molecular weight hyaluronic acid, and longevity. J Cell Commun Signal 2015, 9 (1), 91-92.
61. Voutouri, C.; Polydorou, C.; Papageorgis, P.; Gkretsi, V.; Stylianopoulos, T., Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy(1,2). Neoplasia 2016, 18 (12), 732-741.
62. Carmeliet, P.; Jain, R. K., Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011, 10 (6), 417-27.
63. Hellberg, C.; Ostman, A.; Heldin, C. H., PDGF and vessel maturation. Recent Results Cancer Res 2010, 180, 103-14.
64. Uutela, M.; Wirzenius, M.; Paavonen, K.; Rajantie, I.; He, Y.; Karpanen, T.; Lohela, M.; Wiig, H.; Salven, P.; Pajusola, K.; Eriksson, U.; Alitalo, K., PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 2004, 104 (10), 3198-204.
65. Radisky, E. S.; Radisky, D. C., Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci-Landmrk 2015, 20, 1144-1163.
66. Jain, R. K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005, 307 (5706), 58-62.
67. Chen, Q.; Xu, L.; Chen, J.; Yang, Z.; Liang, C.; Yang, Y.; Liu, Z., Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials 2017, 148, 69-80.
68. Maione, F.; Giraudo, E., Tumor angiogenesis: methods to analyze tumor vasculature and vessel normalization in mouse models of cancer. Methods Mol Biol 2015, 1267, 349-65.
69. Hofmann, M.; Pflanzer, R.; Zoller, N. N.; Bernd, A.; Kaufmann, R.; Thaci, D.; Bereiter-Hahn, J.; Hirohata, S.; Kippenberger, S., Vascular endothelial growth factor C-induced lymphangiogenesis decreases tumor interstitial fluid pressure and tumor. Transl Oncol 2013, 6 (4), 398-404.
70. Angiogenesis Inhibitors.
71. Voloshin T, F. E., Shaked Y., Small but mighty: microparticles as mediators of tumor progression. Cancer Microenviron. 2014.
72. S, E. L. A.; Mager, I.; Breakefield, X. O.; Wood, M. J., Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013, 12 (5), 347-57.
73. Desrochers, L. M.; Antonyak, M. A.; Cerione, R. A., Extracellular Vesicles: Satellites of Information Transfer in Cancer and Stem Cell Biology. Dev Cell 2016, 37 (4), 301-309.
74. Gopal, S. K.; Greening, D. W.; Rai, A.; Chen, M.; Xu, R.; Shafiq, A.; Mathias, R. A.; Zhu, H. J.; Simpson, R. J., Extracellular vesicles: their role in cancer biology and epithelial-mesenchymal transition. Biochem J 2017, 474 (1), 21-45.
75. Bussard, K. M.; Mutkus, L.; Stumpf, K.; Gomez-Manzano, C.; Marini, F. C., Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 2016, 18.
76. Pickup, M. W.; Mouw, J. K.; Weaver, V. M., The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014, 15 (12), 1243-53.
77. Jain, R. K., Transport of molecules in the tumor interstitium: a review. Cancer Res 1987, 47 (12), 3039-51.
78. Netti, P. A.; Berk, D. A.; Swartz, M. A.; Grodzinsky, A. J.; Jain, R. K., Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 2000, 60 (9), 2497-503.
79. Wells, H. S.; Youmans, J. B.; Miller, D. G., Tissue pressure (intracutaneous, subcutaneous, and intramuscular) as related to venous pressure, capillary filtration, and other factors. J Clin Invest 1938, 17 (4), 489-499.
80. 江苏鱼跃医疗设备股份有限公司.
81. Guyton, A. C., A Concept of Negative Interstitial Pressure Based on Pressures in Implanted Perforated Capsules. Circ Res 1963, 12 (4), 399-+.
82. Scholander, P. F.; Hargens, A. R.; Miller, S. L., Negative pressure in the interstitial fluid of animals. Fluid tensions are spectacular in plants; in animals they are elusively small, but just as vital. Science 1968, 161 (3839), 321-8.
83. Aukland, K.; Fadnes, H. O., Protein concentration of interstitial fluid collected from rat skin by a wick method. Acta Physiol Scand 1973, 88 (3), 350-8.
84. Aukland, K.; Fadnes, H. O.; Johnsen, H. M., Protein concentration and oncotic pressure of interstitial fluid collected by wick technique. Bibl Anat 1975, 13, 43-6.
85. Fadnes, H. O., Protein concentration and hydrostatic pressure in subcutaneous tissue of rats in hypoproteinemia. Scand J Clin Lab Invest 1975, 35 (5), 441-6.
86. SIN JIA ENT. CO., L.
87. Stryker® Surgical, L. N.-.-R. F.
88. ADW6N6, C. S. w. F. P.-I. I.
89. Grundmann, A. C., Francesco & Landolt, Andrin & Barrett, Matthew & Weber, Bruno & Obrist, Dominik., Measurement of Fluid Pressure in Microchannels. 2015.
90. 900A Micropressure system from World Precision Instrument
91. Avila, M. Y.; Carre, D. A.; Stone, R. A.; Civan, M. M., Reliable measurement of mouse intraocular pressure by a servo-null micropipette system. Invest Ophthalmol Vis Sci 2001, 42 (8), 1841-6.
92. .
93. Rao, Y. J.; Jackson, D. A.; Jones, R.; Shannon, C., Development of Prototype Fiber-Optic-Based Fizeau Pressure Sensors with Temperature Compensation and Signal Recovery by Coherence Reading. J Lightwave Technol 1994, 12 (9), 1685-1695.
94. reserved., O. S.-A. r.
95. Full Wealth Enterprise Co., L.
96. Volltel Measurement Technology co., L.
97. Vavruch, P., The correct lubricant. 2006.
98. Jye Yeu Enterprise Co., L.
99. Shen Ian Co., L.
100. Wiig, H.; Noddeland, H., Interstitial fluid pressure in human skin measured by micropuncture and wick-in-needle. Scand J Clin Lab Invest 1983, 43 (3), 255-60.
101. STRANDEN, E., Edema in venous insufficiency. Phlebolymphology 2011.
102. Ebah, L. M.; Wiig, H.; Dawidowska, I.; O'Toole, C.; Summers, A.; Nikam, M.; Jayanti, A.; Coupes, B.; Brenchley, P.; Mitra, S., Subcutaneous interstitial pressure and volume characteristics in renal impairment associated with edema. Kidney Int 2013, 84 (5), 980-8.
103. Danhier, F.; Danhier, P.; De Saedeleer, C. J.; Fruytier, A. C.; Schleich, N.; des Rieux, A.; Sonveaux, P.; Gallez, B.; Preat, V., Paclitaxel-loaded micelles enhance transvascular permeability and retention of nanomedicines in tumors. Int J Pharm 2015, 479 (2), 399-407.
104. Kim, S.; Decarlo, L.; Cho, G. Y.; Jensen, J. H.; Sodickson, D. K.; Moy, L.; Formenti, S.; Schneider, R. J.; Goldberg, J. D.; Sigmund, E. E., Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model. NMR Biomed 2012, 25 (5), 787-94.
105. Grantab, R. H.; Tannock, I. F., Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. Bmc Cancer 2012, 12.
106. Lin, B. Q.; Zeng, Z. Y.; Yang, S. S.; Zhuang, C. W., Dietary restriction suppresses tumor growth, reduces angiogenesis, and improves tumor microenvironment in human non-small-cell lung cancer xenografts. Lung Cancer 2013, 79 (2), 111-7.
107. Integrated Dispensing Solutions, I.
108. Boucher, Y.; Baxter, L. T.; Jain, R. K., Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 1990, 50 (15), 4478-84.
109. Netti, P. A.; Baxter, L. T.; Boucher, Y.; Skalak, R.; Jain, R. K., Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 1995, 55 (22), 5451-8.
110. Leunig, M.; Yuan, F.; Menger, M. D.; Boucher, Y.; Goetz, A. E.; Messmer, K.; Jain, R. K., Angiogenesis, Microvascular Architecture, Microhemodynamics, and Interstitial Fluid Pressure during Early Growth of Human Adenocarcinoma Ls174t in Scid Mice. Cancer Research 1992, 52 (23), 6553-6560.
111. Guyton, A. C., Interstitial Fluid Pressure .2. Pressure-Volume Curves of Interstitial Space. Circ Res 1965, 16 (5), 452-&.
112. Wegner, K. A.; Keikhosravi, A.; Eliceiri, K. W.; Vezina, C. M., Fluorescence of Picrosirius Red Multiplexed With Immunohistochemistry for the Quantitative Assessment of Collagen in Tissue Sections. J Histochem Cytochem 2017, 65 (8), 479-490.