簡易檢索 / 詳目顯示

研究生: 蔡政翰
Tsai, Cheng-Han
論文名稱: 探討DPP-IV穿膜區域的N端和C端鄰近序列對於其嵌入內質網的影響
Contribution of N- and C-terminal region flanking DPP-IV transmembrane domain for ER Translocation
指導教授: 陳新
Chen, Xin
陳令儀
Chen, Linyi
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 50
中文關鍵詞: 穿膜內質網
外文關鍵詞: DPP-IV, transmembrane domain, ER, SRP, translocon
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Membrane proteins targeting to the plasma membrane is mediated by the translocon on the endoplasmic reticulum (ER) through a co-translational translocation process. For type II membrane proteins, protein transport is initiated by the interaction of transmembrane domain (TM) with the signal recognition particle, followed by insertion of TM into the translocon, partition of TM into the lipid, and the transportation of the C-terminal region of TM through the translocon. In this study, we used type II membrane protein DPP-IV as a model protein to study the importance of sequence flanking TM segment. DPP-IV has a short amino terminus located in the cytoplasm, a TM segment anchored to the membrane, and the extracellular C-terminal catalytic domain. We found that introducing proline mutation to TM results in failure of some mutant proteins to translocate to ER, leading to the degradation of the proteins in the cytoplasm. Moreover, we discovered the translocational defect of these mutant DPP-IVs could be rescued by replacing the extracellular C terminal domain with a GFP molecule. Our results indicated that the charge difference flanking TM segment and dimerization have no correlation with the expression of GFP-fused proteins. It is the property of fusion protein that plays a crucial role for protein translocation. Surprisingly, we found GFP and MBP has secretory tendency which promote fusion proteins across membrane.


    膜蛋白被運送到細胞膜上是經由co-translational translocation的過程,此過程的發生只要與內質網上的translocon有關。對於第二類型膜蛋白來說,新生蛋白的運送主要是由蛋白的穿膜區域和訊號辨識分子(SRP)的交互作用而起始的,在作用之後,新生蛋白的穿膜區域嵌入translocon並且側向平移到膜上,然後穿膜區域的C端部份再經由translocon送到內質網內腔。在這次的研究中,我們使用DPP-IV為模式蛋白去研究穿膜區域兩側序列對於蛋白穿膜的重要性。DPP-IV有一段很短的N端序列在細胞質內並以一個穿膜片段嵌在細胞膜上,而其具有催化活性的C端則是位於細胞外。在我們的研究中發現,將穿膜區域以proline做點突變,在某些位置上的proline突變會導致突變蛋白無法移動到內質網,進而導致在細胞質內被降解。此外,我們發現可以藉由用GFP去置換DPP-IV的 C端區域進而使這些運送缺失的突變蛋白可以正常表現。我們的結果指出在穿膜片段附近的帶電分佈以及蛋白本身是否為二聚物都與GFP融合蛋白的表現無關,而是融合蛋白本身的特性對於蛋白的移動扮演重要的角色。令人驚訝的,我們發現GFP和MBP本身具有被送到細胞外的傾向,這樣可以促使這些融合蛋白穿過膜。

    誌謝...............................................................................................................................I Abstract......................................................................................................................III 中文摘要.....................................................................................................................IV Contents.......................................................................................................................V Introduction..................................................................................................................1 Co-translational translocation............................................................................1 ER translocon.......................................................................................................3 Contribution of charges for the topology of transmembrane proteins...........5 DPP-IV is a type II membrane protein with dimeric structure.......................8 Materials and Methods..............................................................................................11 Materials.............................................................................................................11 Plasmid construction..........................................................................................11 Cell culture..........................................................................................................17 Quantification of Protein concentration...........................................................17 Western blot analysis.........................................................................................18 Cell Surface Biotinylation..................................................................................19 Results.........................................................................................................................21 DPP-IV with L17P, V18P or I20P TM mutation is degraded rapidly in the cytosol..........................................................................................................21 Changing N-terminal charged residues could not rescue the translocational defects of proline mutants.........................................................................22 The translocational defect of DPP-IV TM mutants could be rescued by replacing the extracellular C terminal domain with GFP......................23 C-terminal region of DPP-IV did not contribute to rescue protein translocation...............................................................................................24 Dimerization has no correlation with protein translocation..........................25 The translocational defects of TM mutants were rescued by replacing the extracellular C-terminal domain with MBP, but not CD13...................26 GFP and MBP could be secreted to extracellular space by themselves...................................................................................................27 Conclusion...................................................................................................................28 Discussions..................................................................................................................30 References...................................................................................................................33 Figures.........................................................................................................................37 Figure 1. Proline mutation on the TM affects the DPP IV production..................................................................................37 Figure 2. The change of N-terminal charged residues of TM segment cannot rescue the translocational defect of TM mutants........39 Figure 3. The translocational defect of DPP-IV TM mutants are rescued by replacing the extracellular C terminal domain with a GFP molecule.......................................................................................41 Figure 4. The lengthening TM-fusions did not affect the localization of mutants........................................................................................42 Figure 5. Dimerization of DPP-IV is not the course of translocational defect of TM mutants.................................................................44 Figure 6. The property of protein affects the translocation of fusion proteins........................................................................................45 Figure 7. GFP and MBP could be secreted to extracellular space by themselves...................................................................................46 Tables...........................................................................................................................47 Table 1. TM proline mutation primer list..................................................47 Table 2. The list of lengthening TM primer...............................................48 Table 3. The list of lengthen TM-GFP-fused proteins..............................49 Supplementary............................................................................................................50 S1. Proline mutation on the TM affects the DPP IV production.............50

    1. Cross, B.C., et al., Delivering proteins for export from the cytosol. Nat Rev Mol Cell Biol, 2009. 10(4): p. 255-64.
    2. Rapoport, T.A., Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature, 2007. 450(7170): p. 663-9.
    3. Weihofen, A., et al., Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science, 2002. 296(5576): p. 2215-8.
    4. Rapoport, T.A., B. Jungnickel, and U. Kutay, Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem, 1996. 65: p. 271-303.
    5. Matlack, K.E., W. Mothes, and T.A. Rapoport, Protein translocation: tunnel vision. Cell, 1998. 92(3): p. 381-90.
    6. Johnson, A.E. and M.A. van Waes, The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol, 1999. 15: p. 799-842.
    7. Osborne, A.R., T.A. Rapoport, and B. van den Berg, Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol, 2005. 21: p. 529-50.
    8. Van den Berg, B., et al., X-ray structure of a protein-conducting channel. Nature, 2004. 427(6969): p. 36-44.
    9. Cannon, K.S., et al., Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J Cell Biol, 2005. 169(2): p. 219-25.
    10. Plath, K., et al., Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell, 1998. 94(6): p. 795-807.
    11. Kowarik, M., et al., Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol Cell, 2002. 10(4): p. 769-78.
    12. Heinrich, S.U., et al., The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell, 2000. 102(2): p. 233-44.
    13. Mothes, W., et al., Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell, 1997. 89(4): p. 523-33.
    14. Sakaguchi, M., et al., Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge. Proc Natl Acad Sci U S A, 1992. 89(1): p. 16-9.
    15. Wahlberg, J.M. and M. Spiess, Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J Cell Biol, 1997. 137(3): p. 555-62.
    16. Harley, C.A., et al., Transmembrane protein insertion orientation in yeast depends on the charge difference across transmembrane segments, their total hydrophobicity, and its distribution. J Biol Chem, 1998. 273(38): p. 24963-71.
    17. Rosch, K., et al., The topogenic contribution of uncharged amino acids on signal sequence orientation in the endoplasmic reticulum. J Biol Chem, 2000. 275(20): p. 14916-22.
    18. Denzer, A.J., C.E. Nabholz, and M. Spiess, Transmembrane orientation of signal-anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J, 1995. 14(24): p. 6311-7.
    19. von Heijne, G., The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J, 1986. 5(11): p. 3021-3027.
    20. Laws, J.K. and R.E. Dalbey, Positive charges in the cytoplasmic domain of Escherichia coli leader peptidase prevent an apolar domain from functioning as a signal. EMBO J, 1989. 8(7): p. 2095-9.
    21. Kiefer, D., et al., Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane. EMBO J, 1997. 16(9): p. 2197-204.
    22. Hartmann, E., T.A. Rapoport, and H.F. Lodish, Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci U S A, 1989. 86(15): p. 5786-90.
    23. von Heijne, G., Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature, 1989. 341(6241): p. 456-8.
    24. Parks, G.D. and R.A. Lamb, Topology of eukaryotic type II membrane proteins: importance of N-terminal positively charged residues flanking the hydrophobic domain. Cell, 1991. 64(4): p. 777-87.
    25. Monier, S., et al., Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol, 1988. 107(2): p. 457-70.
    26. Sato, T., et al., The amino-terminal structures that determine topological orientation of cytochrome P-450 in microsomal membrane. EMBO J, 1990. 9(8): p. 2391-7.
    27. Szczesna-Skorupa, E., et al., Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide. Proc Natl Acad Sci U S A, 1988. 85(3): p. 738-42.
    28. Szczesna-Skorupa, E. and B. Kemper, NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2. J Cell Biol, 1989. 108(4): p. 1237-43.
    29. Beltzer, J.P., et al., Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence. J Biol Chem, 1991. 266(2): p. 973-8.
    30. Parks, G.D. and R.A. Lamb, Role of NH2-terminal positively charged residues in establishing membrane protein topology. J Biol Chem, 1993. 268(25): p. 19101-9.
    31. Goder, V., T. Junne, and M. Spiess, Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol Biol Cell, 2004. 15(3): p. 1470-8.
    32. Deacon, C.F., B. Ahren, and J.J. Holst, Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes? Expert Opin Investig Drugs, 2004. 13(9): p. 1091-102.
    33. Mentlein, R., Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. Regul Pept, 1999. 85(1): p. 9-24.
    34. De Meester, I., et al., Natural substrates of dipeptidyl peptidase IV. Adv Exp Med Biol, 2000. 477: p. 67-87.
    35. Augustyns, K., et al., The unique properties of dipeptidyl-peptidase IV (DPP IV / CD26) and the therapeutic potential of DPP IV inhibitors. Curr Med Chem, 1999. 6(4): p. 311-27.
    36. Franco, R., et al., Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev, 1998. 161: p. 27-42.
    37. Morimoto, C. and S.F. Schlossman, The structure and function of CD26 in the T-cell immune response. Immunol Rev, 1998. 161: p. 55-70.
    38. von Bonin, A., J. Huhn, and B. Fleischer, Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev, 1998. 161: p. 43-53.
    39. De Meester, I., et al., CD26, let it cut or cut it down. Immunol Today, 1999. 20(8): p. 367-75.
    40. Cheng, H.C., M. Abdel-Ghany, and B.U. Pauli, A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem, 2003. 278(27): p. 24600-7.
    41. Chen, W.T., DPPIV and seprase in cancer invasion and angiogenesis. Adv Exp Med Biol, 2003. 524: p. 197-203.
    42. Hong, W.J. and D. Doyle, Membrane orientation of rat gp110 as studied by in vitro translation. J Biol Chem, 1988. 263(32): p. 16892-8.
    43. Engel, M., et al., The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A, 2003. 100(9): p. 5063-8.
    44. Rasmussen, H.B., et al., Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol, 2003. 10(1): p. 19-25.
    45. Thoma, R., et al., Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure, 2003. 11(8): p. 947-59.
    46. Fulop, V., Z. Bocskei, and L. Polgar, Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell, 1998. 94(2): p. 161-70.
    47. Low, S.H., et al., Golgi retardation in Madin-Darby canine kidney and Chinese hamster ovary cells of a transmembrane chimera of two surface proteins. J Biol Chem, 1994. 269(3): p. 1985-94.
    48. Munro, S., Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention. EMBO J, 1991. 10(12): p. 3577-88.
    49. Hong, W.J. and D. Doyle, Molecular dissection of the NH2-terminal signal/anchor sequence of rat dipeptidyl peptidase IV. J Cell Biol, 1990. 111(2): p. 323-8.
    50. Chien, C.H., et al., Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry, 2006. 45(23): p. 7006-12.
    51. Chien, C.H., et al., One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem, 2004. 279(50): p. 52338-45.
    52. Taracha, E., et al., Alanine aminopeptidase activity in urine: a new marker of chronic alcohol abuse? Alcohol Clin Exp Res, 2004. 28(5): p. 729-35.
    53. Nilsson, I., et al., Proline-induced disruption of a transmembrane alpha-helix in its natural environment. J Mol Biol, 1998. 284(4): p. 1165-75.
    54. Nilsson, I. and G. von Heijne, Breaking the camel's back: proline-induced turns in a model transmembrane helix. J Mol Biol, 1998. 284(4): p. 1185-9.
    55. Hessa, T., et al., Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature, 2005. 433(7024): p. 377-81.
    56. Hessa, T., et al., Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, 2007. 450(7172): p. 1026-30.
    57. Einhauer, A. and A. Jungbauer, The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods, 2001. 49(1-3): p. 455-65.
    58. Chelur, D., et al., Fusion Tags for Protein Expression and Purification. BioPharm International Supplements, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE