研究生: |
李佳穎 Lee, Chia-Ying |
---|---|
論文名稱: |
加權流形上的幾何 Geometry of Weighted Manifolds |
指導教授: |
宋瓊珠
Sung, Chiung-Jue Anna |
口試委員: |
邱鴻麟
Chiu, Hung-Lin 蕭育如 Syau, Yu-Ru |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 225 |
中文關鍵詞: | 光滑賦距測度空間 、巴克里-埃默瑞曲率 、加權流形 、熱方程 、拉普拉斯方程 、梯度估計 、熱核 、格林函數 、最低頻譜 、分裂定理 、帕松方程 、龐加萊不等式 、黎曼流形 、瑞奇孤立子 、哈奈克不等式 |
外文關鍵詞: | smooth metric measure space, Bakry-Émery curvature, weighted manifold, heat equation, Laplacian equation, gradient estimate, heat kernel, Green's function, bottom spectrum, splitting theorem, Poisson equation, Poincaré inequality, Riemannian manifold, Ricci soliton, Harnack inequality |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們關注在伴隨某種增長加權函數的光滑賦距測度空間上的幾何。首先在滿足加權龐加萊不等式的完備黎曼流形上,我們學習了調和函數的衰退估計和體積估計,並藉此了解在這種流形上的分裂定理。接著我們聚焦於伴隨有界梯度的加權函數和有負下界巴克里-埃默瑞曲率的加權流形並考慮其上的加權熱方程。我們建立了此熱方程正解的梯度估計並給出熱核和格林函數的估計。最後我們學習將其應用於在伴隨正頻譜加權流形上的帕松方程及穩定瑞奇孤立子。
In this thesis, we focus on the geometry of the smooth metric measure space (M,g,exp(-f)dv) with some growth weighted function f. We first study the decay estimates of harmonic functions and volume estimates on complete Riemannian manifolds satisfying a weighted Poincaré inequality. Then we study splitting theorems on such manifolds. Next, we consider the weighted heat equation on manifolds with bounded gradient f and Bakry-Émery curvature bounded from below. In particular, we establish a gradient estimate of the positive solutions and give estimates of the heat kernel and the Green's function. Finally, we study the weighted Poisson equation and steady Ricci solitons on such manifolds with positive spectrum as applications.
[1] H.D. Cao, Recent progress on Ricci solitons, Adv. Lectures Math. 11 (2) (2010) 1–38.
[2] J. Carillo, L. Ni, Sharp logarithmic Sobolev inequalities on gradient solitons and applications,
Comm. Anal. Geom. 17 (2009) 721–753.
[3] L. C. Chang, C. J. Sung, Gradient estimate of weighted heat kernel on smooth metric
measure spaces (preprint).
[4] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143
(1975) 289–297.
[5] L. C. Evans, Partial Differential Equations, Second Edition, American Mathematical Society.
(2010).
[6] F. Fang, X.-D. Li, Z. Zhang, Two generalizations of Cheeger–Gromoll splitting theorem
via Bakry–Émery Ricci curvature, Ann. Inst. Fourier (Grenoble) 59 (2) (2009) 563–573.
[7] A. Grigor’yan, Heat kernels on weighted manifolds and applications, The ubiquitous heat
kernel, Contemp. Math. vol. 398 (2006) 93–191.
[8] P. Li, Geometric Analysis, Cambridge University Press. (2012).
[9] P. Li, L.F. Tam, Positive harmonic functions on complete manifolds with non-negative
curvature outside a compact set, Ann. Math. 125 (1) (1987) 171–207.
[10] P. Li, L.F. Tam, The heat equation and harmonic maps of complete manifolds, Invent.
Math. 105 (1991) 1–46.
[11] P. Li, L.F. Tam, Harmonic functions and the structure of complete manifolds, J. Diff.
Geom. 35 (1992) 359–383.
[12] P. Li, J. Wang, Complete manifolds with positive spectrum, J.Differential Geom. 58 (2001)
501–534.
[13] P. Li, J. Wang, Complete manifolds with positive spectrum, II, J.Differential Geom. 62
(2002) 143–162.
[14] P. Li, J. Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci.
Éc. Norm. Supér. 39 (2006) 921–982.
[15] P. Li, S.T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156
(1986) 153–201.
[16] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian
manifolds, J. Math. Pures Appl. 84 (2005) 1295–1361.
[17] J. Lott, Some geometric properties of the Bakry-Émery-Ricci tensor, Ann. of Math. (2)
110 (3) (1979) 567–573.
[18] O. Munteanu, C. J. Sung, J. Wang, Poisson equation on complete manifolds, Adv. Math.
348 (2019), 81–145.
[19] O. Munteanu, C. J. Sung, J. Wang, Weighted Poincaré inequality and the Poisson equation,
(2019).
[20] O. Munteanu, J. Wang, Smooth metric measure spaces with nonnegative curvature, Comm.
Anal. Geom. 19 (3) (2011) 451–486.
[21] O. Munteanu, J. Wang Analysis of the weighted Laplacian and applications to Ricci solitons,
Comm. Anal. Geom. 20 (1) (2012) 55–94.
[22] O. Munteanu, J. Wang, Geometry of manifolds with densities, Adv. Math. 259 (2014)
269–305.
[23] M. Nakai, On Evans potential, Proc. Japan Acad. 38 (1962) 624–629.
[24] G. Wei, W. Wylie, Comparison geometry for the Bakry–Émery Ricci tensor, J.Differential
Geom. (2009) 377–405.
[25] J.-Y. Wu, Elliptic gradient estimates for a weighted heat equation and applications, Math.
Z. (2015) 451–468.
[26] J.-Y. Wu, P. Wu, Heat kernel on smooth metric measure spaces with nonnegative curvature,
Math. Ann. 362 (2015) 717–742.
[27] S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl.
Math. 28 (1975) 201–228.
[28] S.T. Yau, Some function-theoretic properties of complete Riemannian manifold and their
applications to geometry, Indiana Univ. Math. J. 25 (1976) 659–670.