簡易檢索 / 詳目顯示

研究生: 李佳穎
Lee, Chia-Ying
論文名稱: 加權流形上的幾何
Geometry of Weighted Manifolds
指導教授: 宋瓊珠
Sung, Chiung-Jue Anna
口試委員: 邱鴻麟
Chiu, Hung-Lin
蕭育如
Syau, Yu-Ru
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 225
中文關鍵詞: 光滑賦距測度空間巴克里-埃默瑞曲率加權流形熱方程拉普拉斯方程梯度估計熱核格林函數最低頻譜分裂定理帕松方程龐加萊不等式黎曼流形瑞奇孤立子哈奈克不等式
外文關鍵詞: smooth metric measure space, Bakry-Émery curvature, weighted manifold, heat equation, Laplacian equation, gradient estimate, heat kernel, Green's function, bottom spectrum, splitting theorem, Poisson equation, Poincaré inequality, Riemannian manifold, Ricci soliton, Harnack inequality
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們關注在伴隨某種增長加權函數的光滑賦距測度空間上的幾何。首先在滿足加權龐加萊不等式的完備黎曼流形上,我們學習了調和函數的衰退估計和體積估計,並藉此了解在這種流形上的分裂定理。接著我們聚焦於伴隨有界梯度的加權函數和有負下界巴克里-埃默瑞曲率的加權流形並考慮其上的加權熱方程。我們建立了此熱方程正解的梯度估計並給出熱核和格林函數的估計。最後我們學習將其應用於在伴隨正頻譜加權流形上的帕松方程及穩定瑞奇孤立子。


    In this thesis, we focus on the geometry of the smooth metric measure space (M,g,exp(-f)dv) with some growth weighted function f. We first study the decay estimates of harmonic functions and volume estimates on complete Riemannian manifolds satisfying a weighted Poincaré inequality. Then we study splitting theorems on such manifolds. Next, we consider the weighted heat equation on manifolds with bounded gradient f and Bakry-Émery curvature bounded from below. In particular, we establish a gradient estimate of the positive solutions and give estimates of the heat kernel and the Green's function. Finally, we study the weighted Poisson equation and steady Ricci solitons on such manifolds with positive spectrum as applications.

    Abstract...........................................................i Acknowledgement...................................................ii Contents.........................................................iii 1 Introduction.....................................................1 2 Preliminaries...................................................11 2.1 Definition....................................................11 2.2 First eigenvalue..............................................15 2.3 Bochner formula...............................................16 2.4 Laplacian comparison theorem..................................18 2.5 Volume comparison theorem.....................................23 3 Complete Manifolds with Positive Spectrum.......................26 3.1 Preliminary estimates.........................................26 3.2 Splitting theorem.............................................39 4 Complete Manifolds with Weighted Poincaré Inequality............58 4.1 Existence of the weight function ρ(x).........................59 4.2 Preliminary estimates.........................................64 4.3 A new type Bochner formula....................................78 4.4 Splitting theorem.............................................86 5 Some Structure Theorems on Smooth Metric Measure Spaces........101 5.1 Volume upper and lower bounds................................101 5.2 Splitting for linear weight..................................123 5.3 Splitting for quadratic weight...............................132 6 Weighted Heat Equation on Manifolds with Bounded Gradient f....139 6.1 Gradient estimate for f-Laplacian equation...................140 6.2 Gradient estimate for f-heat equation........................148 6.3 Heat kernel estimate.........................................156 6.4 Green’s function estimate....................................165 7 Existence and Estimate of Weighted Poisson Equation on Manifolds .................................................................170 7.1 Preliminary estimates........................................170 7.2 Solving weighted Poisson equation............................197 8 Applications to Steady Ricci Solitons..........................205 8.1 Heat kernels on steady Ricci solitons........................206 8.2 Poisson equations on steady Ricci solitons...................207 Appendix.........................................................215 A. Gradient estimate on complete manifolds.......................215 B. Sobolev inequality............................................219 C. Stoke’s Theorem...............................................219 D. Semi-group property for heat kernels..........................221 Bibliography.....................................................224

    [1] H.D. Cao, Recent progress on Ricci solitons, Adv. Lectures Math. 11 (2) (2010) 1–38.

    [2] J. Carillo, L. Ni, Sharp logarithmic Sobolev inequalities on gradient solitons and applications,
    Comm. Anal. Geom. 17 (2009) 721–753.

    [3] L. C. Chang, C. J. Sung, Gradient estimate of weighted heat kernel on smooth metric
    measure spaces (preprint).

    [4] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143
    (1975) 289–297.

    [5] L. C. Evans, Partial Differential Equations, Second Edition, American Mathematical Society.
    (2010).

    [6] F. Fang, X.-D. Li, Z. Zhang, Two generalizations of Cheeger–Gromoll splitting theorem
    via Bakry–Émery Ricci curvature, Ann. Inst. Fourier (Grenoble) 59 (2) (2009) 563–573.

    [7] A. Grigor’yan, Heat kernels on weighted manifolds and applications, The ubiquitous heat
    kernel, Contemp. Math. vol. 398 (2006) 93–191.

    [8] P. Li, Geometric Analysis, Cambridge University Press. (2012).

    [9] P. Li, L.F. Tam, Positive harmonic functions on complete manifolds with non-negative
    curvature outside a compact set, Ann. Math. 125 (1) (1987) 171–207.

    [10] P. Li, L.F. Tam, The heat equation and harmonic maps of complete manifolds, Invent.
    Math. 105 (1991) 1–46.

    [11] P. Li, L.F. Tam, Harmonic functions and the structure of complete manifolds, J. Diff.
    Geom. 35 (1992) 359–383.

    [12] P. Li, J. Wang, Complete manifolds with positive spectrum, J.Differential Geom. 58 (2001)
    501–534.

    [13] P. Li, J. Wang, Complete manifolds with positive spectrum, II, J.Differential Geom. 62
    (2002) 143–162.

    [14] P. Li, J. Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci.
    Éc. Norm. Supér. 39 (2006) 921–982.

    [15] P. Li, S.T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156
    (1986) 153–201.

    [16] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian
    manifolds, J. Math. Pures Appl. 84 (2005) 1295–1361.

    [17] J. Lott, Some geometric properties of the Bakry-Émery-Ricci tensor, Ann. of Math. (2)
    110 (3) (1979) 567–573.

    [18] O. Munteanu, C. J. Sung, J. Wang, Poisson equation on complete manifolds, Adv. Math.
    348 (2019), 81–145.

    [19] O. Munteanu, C. J. Sung, J. Wang, Weighted Poincaré inequality and the Poisson equation,
    (2019).

    [20] O. Munteanu, J. Wang, Smooth metric measure spaces with nonnegative curvature, Comm.
    Anal. Geom. 19 (3) (2011) 451–486.

    [21] O. Munteanu, J. Wang Analysis of the weighted Laplacian and applications to Ricci solitons,
    Comm. Anal. Geom. 20 (1) (2012) 55–94.

    [22] O. Munteanu, J. Wang, Geometry of manifolds with densities, Adv. Math. 259 (2014)
    269–305.

    [23] M. Nakai, On Evans potential, Proc. Japan Acad. 38 (1962) 624–629.

    [24] G. Wei, W. Wylie, Comparison geometry for the Bakry–Émery Ricci tensor, J.Differential
    Geom. (2009) 377–405.

    [25] J.-Y. Wu, Elliptic gradient estimates for a weighted heat equation and applications, Math.
    Z. (2015) 451–468.

    [26] J.-Y. Wu, P. Wu, Heat kernel on smooth metric measure spaces with nonnegative curvature,
    Math. Ann. 362 (2015) 717–742.

    [27] S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl.
    Math. 28 (1975) 201–228.

    [28] S.T. Yau, Some function-theoretic properties of complete Riemannian manifold and their
    applications to geometry, Indiana Univ. Math. J. 25 (1976) 659–670.

    QR CODE