研究生: |
吳雯婷 Wu, Wen-Ting |
---|---|
論文名稱: |
Noise Suppression in Chaotic Lidars under Different Synchronization Schemes |
指導教授: |
林凡異
Lin, Fan-Yi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 雷射雷達 、同步 、雜訊抑制 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Noise suppression in chaotic lidar with optical feedback (OF), optoelectronic feedback (OEF), and incoherent optical feedback (IOF) based on completed and generalized synchronization schemes under open- and close-loop are investigated numerically. Unlike the previously proposed chaotic lidar that directly correlates the received signal with the transmitted signal, using an additional receiver laser is proposed used to filter the environmental noise. Both white Gaussian noise in the amplitude and randomly fluctuate phase changing from − to are taken into
account. The numerical results confirm that the chaotic lidar system utilizing a receiver laser for synchronization shows advantages of noise suppressions. In the OF system
with low noise region, the direct correlation (conventional) scheme has better correlation performance than the completed synchronization scheme for SNR > 7 dB and the generalized synchronization scheme for SNR > 12 dB, respectively. When the noise increases to −23 dB < SNR < 12 dB, a suitable optical coupling strength (OF,c = 0.3) must be chosen in the OF synchronization scheme under the generalized synchronization condition to achieve high correlation coefficient, while a insignificant noise suppression in the completed synchronization condition is presented. Compared with the OF system, high correlation performances close to 1 in the OEF system are shown for both the conventional scheme and the synchronization scheme in low noise region (SNR > 7dB). When the noise increases to −23 dB < SNR < −1 dB under the completed synchronization condition and −23 dB < SNR < 10 dB under the generalized synchronization condition, a good noise suppression performance is observed. In the IOF system, on the other hand, synchronization breaks easily in the large noise region. To sum up, the CLIDAR based on the OEF synchronization system has the best performance in noise suppression.
[1] A. Utkin, A. Lavrov, L. Costa, F. Simoes, and R. Vilar, “Detection of small forest fires by lidar,” Appl. Phys 74, 77–83 (2002).
[2] K. Myneni, T. Barr, B. Reed, S. Pethel, and N. Corron, “High-precision ranging using a chaotic laser pulse train,” Appl. Phys. Lett. 78, 1496–1498 (2001).
[3] P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundner, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,”
Appl.Opt 40, 6111–6120 (2001).
[4] A. Rybaltowski and A. Taflove, “Signal-to-noise ratio in direct-detection midinfrared Random-Modulation Continuous-Wave lidar in the presence of colored
additive noise,” Opt. Express 9, 386–399 (2001).
[5] N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser randommodulation CW lidar,” Appl. Opt. 25, 63–67 (1986).
[6] F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10, 991–997 (2004).
[7] T. Carroll, “Amplitude-independent chaotic synchronization,” Phys. Rev. E 53, 3117–3122 (1996).
[8] E. Rosa, S. Hayes, and C. Grebogi, “Noise filtering in communication with chaos,” Phys. Rev. Lett. 78, 1247–1250 (1997).
[9] T. Carroll and G. Johnson, “Synchronizing broadband chaotic systems to narrow-band signals,” Phys. Rev. E 57, 1555–1558 (1998).
[10] H. Torikai, T. Saito, and W. Schwarz,“Synchronization via multiplex pulse trains,” IEEE Trans. Circuits Syst. I-Fundam. Theor. Appl. 46, 1072–1085 (1999).
[11] N. Rulkov, M. Vorontsov, and L. Illing, “Chaotic free-space laser communication over a turbulent channel,” Phys. Rev. Lett. 89 (2002).
[12] S. Qiao, Z. G. Shi, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, “A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization,” Prog. Electromagn. Res. 75, 225–237 (2007).
[13] V. AnnovazziLodi, S. Donati, and A. Scire,“Synchronization of chaotic injected-laser systems and its application to optical cryptography,” IEEE J. Quantum Electron. 32, 953–959 (1996).
[14] J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron 38, 1141–1154 (2002).
[15] M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photonics Technol. Lett. 21, 426–428 (2009).
[16] Z. Chen, W. Lin, and J. Zhou, “Complete and generalized synchronization in a class of noise perturbed chaotic systems,” Chaos 17 (2007).
[17] A. Belmonte and J. M. Kahn, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express 16, 14151–14162
(2008).
[18] A. Belmonte and J. M. Kahn, “Capacity of coherent free-space optical links using atmospheric compensation techniques,” Opt. Express 17, 2763–2773 (2009).
[19] S. Tang and J. M. Liu, “Chaos synchronization in semiconductor lasers with optoelectronic feedback,” IEEE J. Quantum Electron. 39, 708–715 (2003).
[20] J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer, Berlin, 2007), 2nd ed.
[21] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195 – 205 (2000).
[22] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron. 39, 562–568 (2003).
[23] J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback - Theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[24] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64, 821–824 (1990).
[25] I. Z. Kiss and J. L. Hudson, “Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator,” Phys. Rev. E 64, 046215 (2001).
[26] M. Ciszak, F. Marino, R. Toral, and S. Balle,“Dynamical mechanism of anticipating synchronization in excitable systems,” Phys. Rev. Lett. 93, 114102 (2004).
[27] C. Sch¨afer, M. G. Rosenblum, H.-H. Abel, and J. Kurths, “Synchronization in the human cardiorespiratory system,” Phys. Rev. E 60, 857–870 (1999).
[28] M. W. Lee, J. Paul, S. Sivaprakasam, and K. A. Shore, “Comparison of closedloop and open-loop feedback schemes of message decoding using chaotic laser diodes,” Opt. Lett. 28, 2168–2170 (2003).
[29] R. Vicente, T. Perez, and C. Mirasso, “Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38, 1197–1204 (2002).
[30] E. L. Lawrence, J. M. Liu, and S. Lev, Tsimring,Digital Communications Using Chaos and Nonlinear Dynamics (Springer, New York, 2006).
[31] H. F. Chen and J. M. Liu, “Complete phase and amplitude synchronization of broadband chaotic optical fields generated by semiconductor lasers subject to optical injection,” Phys. Rev. E 71 (2005).
[32] T. Cossio, K. Slatton, W. Carter, K. Shrestha, and D. Harding, “Predicting topographic and bathymetric measurement performance for low-snr airborne lidar,” Geoscience and Remote Sensing, IEEE Transactions on 47, 2298 –2315 (2009).
[33] A. B. Utkin, A. Lavrov, and R. Vilar, “Laser rangefinder architecture as a cost-effective platform for lidar fire surveillance,” Optics Laser Technology 41, 862–870 (2009).
[34] A. B. Utkin, A. Fernandes, A. Lavrov, and R. Vilar, “Feasibility of forestfire smoke detection using lidar,” International Journal of Wildland Fire 12, 159–166 (2003).