簡易檢索 / 詳目顯示

研究生: 葉小語
Yeh, Hsiao-Yu
論文名稱: 運用牛頓法與晶格簡化QR分解預處理之大規模多輸入多輸出偵測器
Large-Scale MIMO Detector Based on Newton’s Method with Lattice Reduction and QR Decomposition
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 蔡佩芸
Tsai, Pei-Yun
陳喬恩
Chen, Chiao-En
沈中安
Shen, Chung-An
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 75
中文關鍵詞: 晶格簡化牛頓法大規模多輸入多輸出無線通訊
外文關鍵詞: Lattice Reduction, Newton’s Method, Large-Scale MIMO, Wireless communication
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大規模的多輸入多輸出天線陣列在未來5G通訊中扮演著重要的角色,它能夠在不增加通道頻寬和傳輸能量之下,提升無線系統的資料傳輸率。然而,隨著天線數的增加,多輸入多輸出偵測器的複雜度也相對的提高。因此,在硬體方面,要設計出高效能且低複雜度的多輸入多輸出偵測器成為一項大課題。有許多演算法,例如:內部迭代消去干擾偵測器,能提供高吞吐量且低複雜度,但是效能只能接近最小均方誤差偵測器。基於三角形近似鬆弛偵測器能夠接近最大似然偵測器的效能,但是只支援BPSK和QPSK調變,而且複雜度仍然相當的高。因此,此篇論文提出了晶格簡化預處理之訊號智慧更新內部迭代消去干擾偵測器,能夠支援高QAM調變。雖然效能只能接近最小均方誤差偵測器,但是能夠加快收斂的速度和降低接收端的複雜度。相比於內部迭代消去干擾偵測器,此演算法能夠花費較少的迭代次數,在64-QAM且128×8天線設定下,可以減少95.35%的複雜度。


    Massive multiple-input multiple-output (MIMO) was proposed for the higher wireless data transmission rate without increasing channel bandwidth and transmit power. It plays an important role in the prospective fth-generation (5G) wireless communication. Meanwhile, the complexity of the MIMO detector increases signi cantly along with the number of antennas. So, the design of high-performance low-complexity MIMO detector is a big challenge in hardware. There are numerous low-complexity MIMO detection algorithms proposed in order to solve this problem. However, many algorithms such as intra-iterative interference cancellation (IIC) detector provide high throughput and lower complexity, but they only approach the performance of the minimum-mean-square-error (MMSE) detector. The triangular approximate relaxation based detector (TASER) can approximate maximum likelihood (ML) detection performance, but is only subject to BPSK and QPSK modulation. However, its complexity still very high. Then, this study proposes a lattice-reduction-aided (LRA) symbol-wise (SW) IIC detector which can support M-QAM modulation. Although being near-MMSE performance, the proposed algorithm has advantages in the higher convergence rate and lower computational complexity in detector parts. The iteration number of the proposed algorithm is less than that of the IIC detector. In 64-QAM 128 x 8 antenna setting MIMO system, the proposed detector reduces about 95:35% computational complexity for IIC detector.

    Contents 1 Introduction 1 1.1 Uplink Massive MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 MIMO Detection Based on Newton’s Method and Lattice Reduction 5 2.1 Uplink Massive MIMO System Model . . . . . . . . . . . . . . . . . . . . 5 2.2 Triangular Approximate Semidefinite Relaxation (TASER) . . . . . . . . 7 2.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 MIMO Detection Based on Newton’s Method . . . . . . . . . . . . . . . 13 2.4.1 Intra-Iterative Interference Cancellation (IIC) Detector . . . . . . 13 2.4.2 Advantages and Disadvantages Comparison with TASER . . . . . 18 2.5 QR Decomposition Algorithm with Givens Rotation Method . . . . . . . 19 2.6 Lattice Reduction (LR) Algorithm . . . . . . . . . . . . . . . . . . . . . 21 2.7 Lattice-Reduction-Aided (LRA) MIMO Detector . . . . . . . . . . . . . . 24 3 Proposed Lattice-Reduction-Aided Symbol-Wise IIC Detector 27 3.1 Symbol-Wise (SW) IIC Detector . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 IIC Detector Based on Newton’s Method with LR and QR Decomposition 29 3.3 LRA SW IIC Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Simulation Result and Analysis 37 4.1 Selection of Coefficient in LR . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Floating-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . 54 4.4 Fixed-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Conclusion 71

    Bibliography

    [1] O. Castaeda, T. Goldstein, and C. Studer, “Data detection in large multi-antenna wireless systems via approximate semidefinite relaxation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 2334–2346, Dec 2016.

    [2] J. Chen, Z. Zhang, H. Lu, J. Hu, and G. E. Sobelman, “An intra-iterative interference cancellation detector for large-scale MIMO communications based on convex optimization,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 11, pp. 2062–2072, Nov 2016.

    [3] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multiple antennas,” in Bell Laboratories Technical Journal, 1996, pp. 41 – 59.

    [4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, February 2014.

    [5] C. A. Shen and A. M. Eltawil, “A radius adaptive K-best decoder with early termination: Algorithm and VLSI architecture,” IEEE Trans. Circuits Syst. I, vol. 57, no. 9, pp. 2476 –2486, Sep. 2010.

    [6] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1566 – 1577, July 2005.

    [7] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, “Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 916–929, 2014.

    [8] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “VLSI design of large-scale soft-output MIMO detection using conjugate gradients,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2015, pp. 1498–1501.

    [9] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, “Efficient architecture for soft-output massive MIMO detection with Gauss-Seidel method,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), May 2016, pp. 1886–1889.

    [10] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, “FPGA design of a coordinate descent data detector for large-scale MU-MIMO,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), May 2016, pp. 1894–1897.

    [11] S. Shahabuddin, M. Juntti, and C. Studer, “ADMM-based infinity norm detection for large MU-MIMO: Algorithm and VLSI architecture,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–4.

    [12] Z. q. Luo, W. k. Ma, A. M. c. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, 2010.

    [13] D. A. Guimaraes, G. H. F. Floriano, and L. S. Chaves, “A tutorial on the CVX system for modeling and solving convex optimization problems,” IEEE Latin America Transactions, vol. 13, no. 5, pp. 1228–1257, May 2015.

    [14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.

    [15] A. K. Lenstra, H. W. Lenstra, and L. Lov´asz, “Factoring polynomials with rational coefficients,” Math. Ann., vol. 261, pp. 515–534, 1982.

    [16] C.-F. Liao, J.-Y. Wang, and Y.-H. Huang, “A 3.1 Gb/s 8 × 8 sorting reduced K-best detector with lattice reduction and QR decomposition,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 12, pp. 2675–2688, Nov 2014.

    QR CODE