簡易檢索 / 詳目顯示

研究生: 鄭志崇
Chih-Chung Cheng
論文名稱: 應用於頻率非選擇性衰退通道之連續相位頻移鍵調變的時間空間碼設計
Space-Time Code Design for CPFSK Modulation over Frequency-Nonselective Fading Channels
指導教授: 呂忠津
Chung-Chin Lu
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 73
中文關鍵詞: 時間空間碼連續相位頻移鍵時間空間分集頻率非選擇性衰退通道交錯
外文關鍵詞: Space-time codes, Continuous phase frequency shift keying, space-time diversity, frequency-nonselective fading channels, interleaving
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在頻率非選擇性衰退通道下透過多個傳送與接收天線來通訊的研究受到了很大的注意。另一方面,籬笆編碼連續相位調變在頻寬和功率有限的通訊系統應用中也受到很大的關注。這是因為它可以免除非線性通道效應而且在功率、頻寬和複雜度之間有著很好的取捨。連續相位頻移鍵調變是一種簡單的連續相位調變機制,並且在數位移動無線電傳輸中非常有用。在這篇論文裡面,我們首先對於連續相位頻移鍵調變發展了一個在頻率非選擇性快速衰退通道下新奇的時間空間編碼設計準則,並且提出了一個簡單的編碼機制。這個編碼機制包含了一個最佳化的環迴旋碼和一個空間編碼器。我們的推導是基於Rimoldi 對於連續相位調變信號的分解方法。Rimoldi 的方法把連續相位調變器分解成一個線性時間不變性的連續相位編碼器,串接著一個時間不變性的非記憶性的調變器。這種方法啟發我們來建構一個基於環的連續相位頻移鍵調變的時間空間碼編碼器。從我們的推導可以得到這個編碼設計準則和一個由連續相位頻移鍵調變器的輸入符元構成的特別矩陣有關。我們提出的簡易的交錯式時間空間編碼架構包含了由迴旋交錯器連結起來的環迴旋編碼器和空間編碼器,能夠利用可能的時間與空間分集增益。我們探討了從空間調變柵狀圖來產生符元度量給迴旋碼的Viterbi 解碼器的解碼演算法。透過模擬結果,我們可以證實這種透過交錯式連結的迴旋碼(針對時間分集增益)與空間編碼(針對空間分集增益)組合,在多種的系統參數下都深具優勢。


    In this thesis, we derive a novel space-time code design
    criterion for continuous phase frequency shift keying (CPFSK) over frequency-nonselective fading channels.
    Our derivation is based on a specific matrix that is related to the input symbols of the CPFSK modulators.
    With this code design criterion, we propose a simple interleaved space-time encoding scheme for CPFSK modulation over frequency-nonselective correlated fading channels to exploit potential temporal and spatial diversity
    advantages. Such an encoding scheme consists of a ring convolutional encoder and a spatial encoder between which a convolutional interleaver is placed. A decoding algorithm that generates symbol metrics for the Viterbi decoder
    of convolutional codes from the spatial modulation trellis is examined. Simulation results confirm that the advantages of combination of the interleaved convolutional encoding (for temporal diversity) and the spatial encoding (for spatial diversity) are promising for various system parameters.

    Acknowledgment i Abstract i Contents i List of Figures v List of Tables viii 1 Introduction 1 2 A Survey of Space-Time Coding 4 2.1 Capacity when Using Multiple Antennas . . . . . . . .5 2.1.1 The Gaussian Channel with Fixed Transfer Function .6 2.1.2 The Gaussian Channel with Rayleigh Fading . . . . .7 2.2 Space-Time Coding for Fading Channels . . . . . . . .9 2.2.1 The Case of Slow Fading . . . . . . . . . . . . . 10 2.2.2 The Case of Fast Fading . . . . . . . . . . . . . 12 2.3 Space-Time Block Coding . . . . . . . . . . . . . . 14 2.3.1 Alamouti’s Scheme . . . . . . . . . . . . . . . .14 2.3.2 Construction from Orthogonal Designs . . . . . . .16 2.4 Space-Time Trellis Coding . . . . . . . . . . . . . 19 3 Space-Time System and Signal Models for CPFSK Modulation 21 3.1 Decomposition Model of CPFSK Modulation . . . . . . 21 3.2 Space-Time System and Signal Model . . . . . . .. . 24 4 Space-Time Code Design Criterion for CPFSK Modulation 26 4.1 The Case of Fast Fading . . . . . . . . . . . . . . 27 4.2 The Case of Slow Fading . . . . . . . . . . . . . . 29 5 A Simple Code Construction for Fast Fading Channels 33 5.1 The Modified Rank Criterion for Fast Fading . . . . 33 5.2 Architecture of the Proposed Space-Time Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . .35 5.3 Analysis of the Proposed Scheme . . . . . . . . . . 36 5.3.1 The Case of Lt < oM(S) . . . . . . . . . . . . . .36 5.3.2 The Case of Lt > oM(S) . . . . . . . . . . . . . .38 5.3.3 Necessary and Sufficient Condition . . . .. . . . 38 5.4 Design Strategy . . . . . . . . . . . . . . . . . . 40 6 An Interleaved Space-Time Coding/Decoding Scheme 43 6.1 Interleaved Spacing-Time Encoding Scheme . . . . . .43 6.2 Decoding Algorithm for Interleaved Space-Time Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . .44 6.2.1 The Spatial Modulation Trellis . . . . . . . . . 44 6.2.2 The Decoding Algorithm . . . . . . . . . . . . . .45 7 Simulation Results 48 7.1 Simulation Models and Configuration . . . . . . . . 48 7.1.1 Configuration of Parameters . . . . . . . . . . . 48 7.1.2 Signal and Fading Models . . . . . . . . . . . . 49 7.2 Performance Comparison for the Noninterleaved Coding Scheme over the Independent Fading Channels . . . . . 50 7.2.1 Comparison for Different S-value . . . . . . . . .50 7.2.2 Comparison for Various ECLs, Lt and Lr . . . . . .53 7.3 Performance Degradation for the Correlated Fading Channels . . . . . . . . . . . . . . . . . . . . . . . .55 7.4 Performance of the Interleaved Coding Scheme . . . .57 8 Conclusion 61 A Mathematical Notation and Basic Matrix Analysis 62 A.1 Notation . . . . . . . . . . . . . . . . . . . . . .62 A.2 Matrix Analysis . . . . . . . . . . . . . . . . . . 63 B Derivation of Performance Criteria 65 B.1 Equations (4.2) and (4.3) . . . . . . . . . . . . . 65 B.2 Equation (4.6) . . . . . . . . . . . . . . . . . . 66 B.3 Equation (4.16) . . . . . . . . . . . . . . . . . . 67 C Trellis Complexity of Optimal CEs 68 Bibliography 69

    [1] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment,” Wireless Personal Commun., vol. 6, pp. 311–335, Mar. 1998.
    [2] I. E. Teletar, “Capacity of multi-antenna Gaussian channels,” Europ. Trans. Telecommun., vol. 10, pp. 585–595, Nov./Dec. 1999.
    [3] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar. 1998.
    [4] V. Tarokh, A. Naguib, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criteria in the presence of channel estimation errors, mobility, and multiple paths,” IEEE Trans. Commun., vol. 47, pp. 199–207, Feb. 1999.
    [5] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.
    [6] A. R. Hammons, Jr. and H. El Gamal, “On the theory of space-time codes for PSK modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 524–542, Mar. 2000.
    [7] Y. Liu, M. P. Fitz, and O. Y. Takeshita, “A rank criterion for QAM space-time codes,” IEEE Trans. Inform. Theory, vol. 48, pp. 3062–3079, Dec. 2002.
    [8] H. El Gamal and A. R. Hammons, Jr., “On the design and performance of algebraic space-time codes for BPSK and QPSK modulation,” IEEE Trans. Commun., vol. 50, pp. 907–913, Jun. 2002.
    [9] H. El Gamal and A. R. Hammons, Jr., “On the design of algebraic space-time codes for MIMO block-fading channels,” IEEE Trans. Inform. Theory, vol. 49, pp. 151–163, Jan. 2003.
    [10] T. Aulin and C.-E. W. Sundberg, “Continuous phase modulation — Part I: Full response signaling,” IEEE Trans. Commun., vol. COM-29, pp. 196–209, Mar. 1981.
    [11] T. Aulin and C.-E. W. Sundberg, “Continuous phase modulation — Part II: Partial response signaling,” IEEE Trans. Commun., vol. COM-29, pp. 219–225, Mar. 1981.
    [12] C.-E. W. Sundberg, “Continuous phase modulation,” IEEE Commun. Magazine, vol. 24, pp. 25–38, Apr. 1986.
    [13] J. B. Anderson, T. Aulin, and C.-E. W. Sundberg, Digital Phase Modulation. New York: Plenum, 1986.
    [14] F. Xiong, Digital Modulation Techniques. Norwood, MA: Artech House, Inc., 2000.
    [15] X. Zhang and M. P. Fitz, “Space-time coding for Rayleigh fading channels in CPM system,” in Proc. 38th Annual Allerton Conf. on Communication, Control, and Computing, Monticello, Illinois, USA, Oct. 2000.
    [16] X. Zhang and M. P. Fitz, “Space-time code design with CPM transmission,” in Proc. ISIT 2001, Washington, DC, USA, Jun. 2001.
    [17] X. Zhang and M. P. Fitz, “Space-time code design with continuous phase modulation,” IEEE J. Select. Areas Commun., vol. 21, pp. 783–792, Jun. 2003.
    [18] J. Sykora, “Constant envelope space-time modulation trellis code design for Rayleigh flat fading channel,” in Proc. IEEE Globalcom 2001, San Antonio, TX, USA, pp. 1113–1117, Nov. 2001.
    [19] J. Sykora, “Trellis coded CPM type space-time modulation design rules for Rayleigh flat fading channel,” Tech. Rep. TD-02-016, COST#273, Jan. 2002.
    [20] G. Wang and X.-G. Xia, “An orthogonal space-time coded CPM system with fast decoding for two transmit antennas,” IEEE Trans. Inform. Theory, vol. 50, pp. 486–493, Mar. 2004.
    [21] B. E. Rimoldi, “A decomposition approach to CPM,” IEEE Trans. Inform. Theory, vol. 34, pp. 260–270, Mar. 1988.
    [22] P. A. Laurent, “Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (AMP),” IEEE Trans. Commun., vol. 34, pp. 150–160, Feb. 1986.
    [23] U. Mengali and M. Morelli, “Decomposition of M-ary CPM signals into PAM waveforms,” IEEE Trans. Inform. Theory, vol. 41, pp. 1265–1275, Sep. 1995.
    [24] R. H.-H. Yang and D. P. Taylor, “Trellis-coded continuous-phase frequency-shift keying with ring convolutional codes,” IEEE Trans. Inform. Theory, vol. 40, pp. 1057–1067, Jul. 1994.
    [25] R. W. Kerr and P. J. McLane, “Coherent detection of interleaved trellis encoded CPFSK on shadowed satellite channels,” IEEE. Trans. Veh. Technol., vol. 41, pp. 159–169, May 1992.
    [26] L. Yiin and G. L. St¨uber, “Error probability of coherent detection for trellis-coded partial response CPM on Rician fading channels,” IEEE Trans. Veh. Technol., vol. 41, pp. 358–363, May 1996.
    [27] W. Honcharenkao, J. P. Kruys, D. Y. Lee, and N. J. Shah, “Broadband wireless access,” IEEE Communications Magazine, vol. 35, pp. 20–26, Jan. 1997.
    [28] L. M. Correia and R. Prasad, “An overview of wireless broadband communications,” IEEE Communications Magazine, vol. 35, pp. 28–33, Jan. 1997.
    [29] Z. Liu, G. B. Giannakis, S. Zhou, and B. Muquet, “Space–time coding for broadband wireless communications,” Wireless Communications and Mobile Computing, vol. 1, pp. 35–53, 2001.
    [30] J. G. Proakis, Digital Communication, 3rd edn. New York: McGraw-Hill, Inc, 1995.
    [31] A. F. Naguib, N. Seshadri, and A. R. Calderbank, “Space-time coding and signal processing for high data rate wireless communications,” IEEE Signal Processing Magazine, vol. 17, pp. 76–92, Mar. 2000.
    [32] N. Morinaga and M. Nakagawa, “New concepts and technologies for achieving highly reliable and high-capacity multimedia wireless communications systems,” IEEE Communications Magazine, vol. 35, pp. 34–40, Jan. 1997.
    [33] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456–1467, Jul. 1999.
    [34] B. Rimoldi and Q. Li, “Coded continuous phase modulation using ring convolutional codes,” IEEE Trans. Commun., vol. 43, pp. 2714–2720, Nov. 1995.
    [35] S. H. Jamali and T. Le-Ngoc, Coded-Modulation Technique for Fading Channels. Boston, MA: Kluwer, 1994.
    [36] C.-C. Lu and C.-Y. Kuo, “Optimal trellis design and labeling of trellis coded MPSK for Rayleigh fading channels,” to be submitted for publication.
    [37] C.-L. Hsiao and C.-C. Lu, “On the design of optimal (2,1) Z2-convolutional coded CPFSK over Rayleigh fading channels,” in Proc. ISIT 1998, Cambridge, MA, USA, Aug. 1998.
    [38] W.-H. Gu and C.-C. Lu, “Rate l/(l+1) convolutional encoders over rings with maximal free branch distance,” in Proc. ISIT 2001, Washington, DC, USA, Jun. 2001.
    [39] C.-C. Lu and J.-P. Chen, “An optimal test of Zq-convolutional coded CPFSK for communications over Rayleigh fading channels,” to be submitted for publication.
    [40] M. Cedervall and R. Johannesson, “A fast algorithm for computing distance spectrum of convolutional codes,” IEEE Trans. Inform. Theory, vol. 35, pp. 1146–1159, Nov. 1989.
    [41] A. C. M. Lee and P. J. McLane, “Convolutionally interleaved PSK and DPSK trellis codes for shadowed, fast fading mobile satellite communication channels,” IEEE Trans. Veh. Technol., vol. 39, pp. 37–47, Feb. 1990.
    [42] V. K. Bhargava, D. Haccoun, R. Matyas, and P. Nuspl, Digital Communications by Satellite. New York: Wiley Interscience, 1981.
    [43] R. A. Horn and C. R. Johnson, Matrix Analysis. New York: Cambridge University Press, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE