研究生: |
游翰思 Hutabalian, Yohanes |
---|---|
論文名稱: |
Ag-Cu-Se-Te 四元系統的相平衡、相生成與相轉變 Phase formation, phase equilibria, and phase transformation of the Ag-Cu-Se-Te quaternary system |
指導教授: |
陳信文
Chen, Sinn-Wen |
口試委員: |
汪上曉
Wong, Shang-Hsiao 高振宏 Kao, C. Robert 紀渥德 Gierlotka, Wojciech 吳欣潔 Wu, Hsin-Jay |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 186 |
中文關鍵詞: | Ag-Cu-Se-Te 、相圖 、相圖計算 、四元系統 、熱電 |
外文關鍵詞: | Ag-Cu-Se-Te, Phase Diagram, Calphad, Quaternary, Thermoelectric |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相圖對於了解相的生成以及相變是不可或缺的資訊,對於設計新的合金以適用新型應用和優化材料的製備過程更是如此。Ag-Cu-Se-Te四元系統為重要的熱電材料應用系統,研究Ag-Cu-Se-Te四元系統相圖,對於獲得材料的基礎知識至關重要,而進一步地深入探討,對於提升Ag-Cu-Se-Te四元作為熱電材料的應用價值有著一定程度的影響力。Ag-Cu-Te-Se四元系統包含六個二元子系統及四個三元子系統。六個二元子系統分別是Ag-Cu、Ag-Te、Ag-Se、Cu-Te、Cu-Se和Se-Te;四個三元子系統則是Ag-Cu-Te,Ag-Se-Te,Ag-Cu-Se和Cu-Se-Te。本研究的目的為利用實驗與Calphad計算方法建構Ag-Cu-Te-Se四元系統之相平衡。例如,利用等溫橫截面、液相線投影圖及擴散偶的界面反應等實驗數據建立相圖,同時,使用Calphad方法進行二元、三元子系統的相圖計算。
本研究藉由實驗方式探討了Ag-Cu-Te、Ag-Se-Te、Ag-Cu-Se與Cu-Se-Te三元子系統之等溫橫截面圖。實驗技術包含使用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、電子微探儀分析(EPMA)和差熱分析(DTA)以研究250℃至600℃的相平衡以及相變資訊。不僅如此,本研究也提出了Ag-Se-Te、Ag-Cu-Se和Cu-Se-Te系統的液相線投影圖。另一方面,一些與相圖相關的擴散反應偶也於本研究中進行探討,並利用相圖解釋其反應機制與主要擴散元素,包含350°C之Ag / Se界面反應,350°C之Ag / Se-30at%Te界面反應,350°C之Ag2Te / Se界面反應以及300°C之Cu2Te / Se界面反.
應以Calphad方法計算Ag-Se、Cu-Te、和Ag-Te二元子系統以及Ag-Se-Te和Cu-Se-Te三元子系統相圖之結果與實驗結果有良好的一致性。然而,由於實驗數據的缺乏,本研究並未包含Ag-Cu-Se與Ag-Cu-Te三元子系統之計算結果。其中,在進行Ag-Cu-Se與Ag-Cu-Te三元合金於300°C至600°C之相平衡實驗的過程中,觀察到銀鬚晶及銅鬚晶的生長現象,此結果顯示壓力釋放造成鬚晶的生長。
根據Ag-Cu-Se-Te四元系統相圖所提供的資訊,本研究也測量了Ag2Te摻雜Cu2Se之熱電性質,並於Ag2Te基底相 (matrix phase) 觀察到AgCuTe析出。Cu2Se的摻雜並未顯示良好的電性質,因此導致ZT值降低。
Phase diagram is indispensable to understanding the phase formation or transformation, designing new alloys for advanced application and optimizing the material processing. The Ag-Cu-Se-Te materials are crucial for thermoelectric applications. Therefore, studying the phase diagrams of the Ag-Cu-Se-Te quaternary system is critical for gaining a fundamental understanding of these materials. Addressing the resulting challenges will be pivotal in unlocking the full potential of Ag-Cu-Se-Te alloys for thermoelectric application. Six binaries and four ternaries are needed to construct the quaternary system. The six binaries are Ag-Cu, Ag-Te, Ag-Se, Cu-Te, Cu-Se and Se-Te, while the four ternaries are Ag-Cu-Te, Ag-Se-Te, Ag-Cu-Se and Cu-Se-Te. This study aims to determine the phase equilibria of the Ag-Cu-Te-Se system using experimental and calculation Calphad-approach. Experimental data such as isothermal sections and liquidus projections, and reactions on the diffusion couples were studied to construct the phase diagrams. Meanwhile, the Calphad-method was used to calculate the phase equilibria of the binary and ternary systems.
The isothermal sections of Ag-Cu-Te, Ag-Se-Te, Ag-Cu-Se, Cu-Se-Te systems were experimentally measured. Various experimental techniques, X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and differential thermal analysis (DTA) were employed to study the phase equilibria and phase transformation between 250oC and 600°C. Further, the liquidus projection in the Ag-Se-Te, Ag-Cu-Se and Cu-Se-Te systems are proposed. In addition, some reaction couples that are related to the phase diagrams are also studied. Those reaction couples were studied as follows: Ag/Se at 350oC, Ag/Se-30at%Te at 350oC, Ag2Te/Se at 350oC, and Cu2Te/Se at 300oC. The determined phase diagrams are used to explain the reaction mechanisms and the fastest diffusion element.
The binary systems of Ag-Se, Cu-Te, and Ag-Te, as well as the ternary systems of Ag-Se-Te and Cu-Se-Te, were modeled using the Calphad-method. The calculated results demonstrated good agreement with experimental data. However, the study did not include calculations for the Ag-Cu-Se and Ag-Cu-Te ternary systems due to a lack of experimental data. In addition, during the equilibration of the alloys in the Ag-Cu-Se and Ag-Cu-Te ternary systems at temperatures ranging from 300°C to 600°C, the growth of silver and copper whiskers was observed. The results suggest that the whisker’s growth is due to stress relief.
Based on the phase diagram information of the Ag-Cu-Se-Te quaternary system. The thermoelectric properties of Ag2Te doped with Cu2Se were measured. The AgCuTe precipitates were observed in the Ag2Te matrix phase, and the Cu2Se doping did not show a good electrical property, thus, resulting in a decrease in the ZT values.
Reference
[1] Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, W.A. Oates, Phase diagram calculation: Past, present and future, Prog. Mater. Sci. 49 (2004) 313–345. doi:10.1016/S0079-6425(03)00025-2.
[2] Y.A. Chang, Phase diagram calculations in teaching, research, and industry, Metall. Mater. Trans. A. 37 (2006) 273–305.
[3] R. Schmid-Fetzer, Phase Diagrams: The Beginning of Wisdom, J. Phase Equilibria Diffus. 35 (2014) 735–760. doi:10.1007/s11669-014-0343-5.
[4] A.A. Kodentsov, G.F. Bastin, F.J.J. van Loo, Application of Diffusion Couples in Phase Diagram Determination, Elsevier Ltd, 2007. doi:10.1016/b978-008044629-5/50006-9.
[5] J.S. Kirkaldy, L.C. Brown, Diffusion behaviour in ternary, multiphase systems, Can. Metall. Q. 2 (1963) 89–115. doi:10.1179/cmq.1963.2.1.89.
[6] F.J.J. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Prog. Solid State Chem. 20 (1990) 47–99. doi:10.1016/0079-6786(90)90007-3.
[7] W. Zhu, Z. Huang, M. Chu, S. Li, Y. Zhang, W. Ao, R. Wang, J. Luo, F. Liu, Y. Xiao, F. Pan, Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials, Chem. Eng. J. 386 (2020) 123917. doi:10.1016/j.cej.2019.123917.
[8] S. Roychowdhury, M.K. Jana, J. Pan, S.N. Guin, D. Sanyal, U. V. Waghmare, K. Biswas, Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe, Angew. Chemie - Int. Ed. 57 (2018) 4043–4047. doi:10.1002/anie.201801491.
[9] R. Wu, Z. Li, Y. Li, L. You, P. Luo, J. Yang, J. Luo, Synergistic optimization of thermoelectric performance in p-type Ag 2 Te through Cu substitution, J. Mater. (2019) 1–7. doi:10.1016/j.jmat.2019.01.008.
[10] W. Zhu, Z. Huang, M. Chu, S. Li, Y. Zhang, W. Ao, R. Wang, J. Luo, F. Liu, Y. Xiao, F. Pan, Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials, Chem. Eng. J. 386 (2020) 123917. doi:10.1016/j.cej.2019.123917.
[11] D.R. Brown, T. Day, T. Caillat, G.J. Snyder, Chemical Stability of (Ag,Cu)2Se: A historical overview, J. Electron. Mater. 42 (2013) 2014–2019. doi:10.1007/s11664-013-2506-2.
[12] K. Zhao, P. Qiu, X. Shi, L. Chen, Recent Advances in Liquid-Like Thermoelectric Materials, Adv. Funct. Mater. 30 (2020). doi:10.1002/adfm.201903867.
[13] J. Liang, P. Qiu, Y. Zhu, H. Huang, Z. Gao, Z. Zhang, X. Shi, L. Chen, Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in Ag2Se1‐xSx System, Research. (2020).
[14] X.J. Liu, F. Gao, C.P. Wang, K. Ishida, Thermodynamic assessments of the Ag-Ni binary and Ag-Cu-Ni ternary systems, J. Electron. Mater. 37 (2008) 210–217. doi:10.1007/s11664-007-0315-1.
[15] P.R. Subramanian, J.H. Perepezko, The ag-cu (silver-copper) system, J. Phase Equilibria. 14 (1993) 62–75. doi:10.1007/BF02652162.
[16] Y.W. Yen, S.W. Chen, Phase equilibria of the Ag-Sn-Cu ternary system, J. Mater. Res. 19 (2004) 2298–2305. doi:10.1557/JMR.2004.0296.
[17] J.L. Murray, T.B. Maasalski, Ag-Cu (silver-copper), in: Bin. Alloy Phase Diagrams, 2nd ed., 1990: pp. 28–29.
[18] F.H. Hayes, H.L. Lukas, G. Effenberg, G. Petzow, A Thermodynamic Optimisation of the Cu-Ag-Pb System, Zhurnal Neorg. Khimii Met. 77 (1986) 749–754.
[19] I. Karakaya, W.T. Thompson, The Ag-Se (Silver-Selenium) system, Bull. Alloy Phase Diagrams. 11 (1990) 266–271. doi:10.1007/BF03029297.
[20] V.B. Rajkumar, S.W. Chen, Ag-Se phase diagram calculation associating ab−initio molecular dynamics simulation, Calphad Comput. Coupling Phase Diagrams Thermochem. 63 (2018) 51–60. doi:10.1016/j.calphad.2018.08.004.
[21] W. Gierlotka, J. Łapsa, K. Fitzner, Thermodynamic description of the Ag-Pb-Te ternary system, J. Phase Equilibria Diffus. 31 (2010) 509–517. doi:10.1007/s11669-010-9791-8.
[22] W. Gierlotka, "Thermodynamic assessment of the Ag–Te binary system, J. Alloys Compd. 485 (2009) 231–235. doi:https://doi.org/10.1016/j.jallcom.2009.06.028.
[23] I. Karakaya, W.T. Thompson, The Ag-Te (Silver-Tellurium) System, J. Phase Equilibria. 12 (1991) 56–63. doi:10.1007/BF02663676.
[24] Z. Du, C. Guo, M. Tao, C. Li, Thermodynamic modeling of the Cu–Se system, Int. J. Mater. Res. 99 (2008) 294–300.
[25] D.J. Chakrabarti, D.E. Laughlin, The Cu-Se (Copper-Selenium) system, Bull. Alloy Phase Diagrams. 2 (1981) 305–315. doi:10.1007/BF02868284.
[26] P.R. Subramanian, Cu-Te (copper-tellerium), 2nd ed., ASM International, Ohio, 1990.
[27] A.S. Pashinkin, V.A. Fedorov, Phase Equilibria in the Cu–Te System, Inorg. Mater. 39 (2003) 647–663.
[28] D. Huang, R. Han, Y. Wang, T. Ye, The Cu–Te system: Phase relations determination and thermodynamic assessment, J. Alloys Compd. 855 (2021) 157373. doi:10.1016/j.jallcom.2020.157373.
[29] G. Ghosh, R.C. Sharma, D.T. Li, Y.A. Chang, The Se-Te (Selenium-Tellurium) system, J. Phase Equilibria. 15 (1994) 213–224. doi:10.1007/BF02646370.
[30] W. Gierlotka, W.-H. Wu, The reoptimization of the binary Se–Te system, Int. J. Mater. Res. 103 (2012) 698–701. doi:https://doi.org/10.3139/146.110677.
[31] M.I. Agaev, S.M. Alekperova, M.I. Zargarova, Physicochemical Study of the Systems Ag2X–Cu2X (X= S, Se), Dokl. Akad. Nauk Az. SSR. 27 (1971) 20–23.
[32] Y.A. Chang, D. Goldberg, J.P. Neumann, Phase diagrams and thermodynamic properties of ternary copper-silver systems, J. Phys. Chem. Ref. Data. 6 (1977) 621–674. doi:10.1063/1.555555.
[33] K. Chrissafis, N. Vouroutzis, K.M. Paraskevopoulos, N. Frangis, C. Manolikas, Phase transformation in CuAgSe: A DSC and electron diffraction examination, J. Alloys Compd. 385 (2004) 169–172. doi:10.1016/j.jallcom.2004.04.119.
[34] Y.G. Asadov, Y.I. Aliyev, A.G. Babaev, Polymorphic transformations in Cu2Se, Ag2Se, AgCuSe and the role of partial cation-cation and anion-anion replacement in stabilizing their modifications, Phys. Part. Nucl. 46 (2015) 452–474. doi:10.1134/s106377961503003x.
[35] N. Valverde, Untersuchungen zur Thermodynamik des Systems Kupfer—Silber—Selen, Zeitschrift Für Phys. Chemie. 61 (1968) 92–107. doi:https://doi.org/10.1524/zpch.1968.61.1_4.092.
[36] E. Schafer, Experimental investigations in the Cu-Ag-S-Se system, Neues Jahrb. Fur Mineral. 169 (1995) 301–304.
[37] A.Y. Mendelevich, A.N. Krestovnikov, V.. Glazov, Phase equilibria of pseudobinary group I chalcogenide system in regular solution approximation, Russ. J. Phys. Chem. 43 (1969) 1723–1724.
[38] Y.I. Dutchak, N.M. Korenchuk, Vapour pressure and intermolecular interaction in copper telluride-silver telluride system, Zhurnal Neorg. Khimii. 51 (1977) 455–458.
[39] B. Legendre, C. Souleau, C. Hangcheng, Phase diagram of the ternary system Cu-Ag-Te. 1. The subternary Cu-Cu2Te-Ag2Te-Ag, Bull. La Soc. Chim. 9–10 (1984) 273–280.
[40] M.N. Agaev, S.M. Alekperova, M.I. Zargarova, Physico-chemical studying of the system Ag2Te-Cu2Te, Dokl. Akad. Nauk Azerb. 27 (1971) 15–18.
[41] I.R. Nuriev, E.Y. Salaev, R.N. Nabiev, Investigation of phases in the Ag2Te-Cu2Te system, Izv. Akad. Nauk SSSR, Neorg. Mater. 19 (1983) 1074–1076.
[42] F.M. Mustafaev, I.Y. Aliyev, T.K. Azizov, A.S. Abbasov, N.A. Aliyeva, Thermodynamics study of Cu2Te-Ag2Te system, Dokl. Akad. Nauk Azerb. SSR. 36 (1980) 22–24.
[43] A.S. Avilov, R. V. Baranova, Synthesis of the mixed telluride, copper silver ditelluride, and determination of its structure by electron diffraction., Kristallografiya. 17 (1972) 219-220.
[44] N. Aramov, I. Odin, Z. Boncheva-Mladenova, Study of the silver selenide-silver telluride system, Thermochim. Acta. 20 (1977) 107–113.
[45] K. Zhao, M. Guan, P. Qiu, A.B. Blichfeld, E. Eikeland, C. Zhu, D. Ren, F. Xu, B.B. Iversen, X. Shi, L. Chen, Thermoelectric properties of Cu2Se1-: XTex solid solutions, J. Mater. Chem. A. 6 (2018) 6977–6986. doi:10.1039/c8ta01313f.
[46] S. Kavirajan, J. Archana, S. Harish, M. Omprakash, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Y. Inatomi, M. Shimomura, Y. Hayakawa, Enhanced seebeck coefficient and low thermal conductivity of Cu2SexTe1-x solid solutions via minority carrier blocking and interfacial effects, J. Alloys Compd. 835 (2020) 155188. doi:10.1016/j.jallcom.2020.155188.
[47] N.M. Glazov, V. M., Burkhanov, A. S., & Saleeva, Phase Equilibria in the Quasi-Binary Systems Formed by Cu Chalcogenides, Zhurnal Fiz. Khimii. 49 (1975) 1658–1661.
[48] D.C. Harris, E.W. Nuffield, Bambollaite, a new copper telluro-selenide, Can. Mineral. 11 (1972) 738–742.
[49] I. Karakaya, W.T. Thompson, Binary Alloy Phase Diagrams, 2nd ed., ASM international, Materials Park., Ohio, 1990.
[50] H.Z. Duan, Y.L. Li, K.P. Zhao, P.F. Qiu, X. Shi, L.D. Chen, Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials, Jom. 68 (2016) 2659–2665. doi:10.1007/s11837-016-1980-4.
[51] X. Wang, P. Qiu, T. Zhang, D. Ren, L. Wu, X. Shi, J. Yang, L. Chen, Compound defects and thermoelectric properties in ternary CuAgSe-based materials, J. Mater. Chem. A. 3 (2015) 13662–13670. doi:10.1039/c5ta02721g.
[52] P.F. Qiu, X.B. Wang, T.S. Zhang, X. Shi, L.D. Chen, Thermoelectric properties of Te-doped ternary CuAgSe compounds, J. Mater. Chem. A. 3 (2015) 22454–22461. doi:10.1039/c5ta06780d.
[53] W. Di Liu, L. Yang, Z.G. Chen, Cu2Se thermoelectrics: property, methodology, and device, Nano Today. 35 (2020). doi:10.1016/j.nantod.2020.100938.
[54] J.J. Hauser, Electrical and structural properties of Ag-X diffusion couples (X = Te, Se, S, and I), J. Appl. Phys. 53 (1982) 3634–3638. doi:10.1063/1.331145.
[55] Y. Lu, Y. Qiu, K. Cai, Y. Ding, M. Wang, C. Jiang, Q. Yao, C. Huang, L. Chen, J. He, Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices, Energy Environ. Sci. 13 (2020) 1240–1249. doi:10.1039/c9ee01609k.
[56] S. Huang, T.R. Wei, H. Chen, J. Xiao, M. Zhu, K. Zhao, X. Shi, Thermoelectric Ag2Se: Imperfection, Homogeneity, and Reproducibility, ACS Appl. Mater. Interfaces. 13 (2021) 60192–60199. doi:10.1021/acsami.1c18483.
[57] P. Wang, J.L. Chen, Q. Zhou, Y.T. Liao, Y. Peng, J.S. Liang, L. Miao, Enhancing the thermoelectric performance of Ag2Se by non-stoichiometric defects, Appl. Phys. Lett. 120 (2022). doi:10.1063/5.0085550.
[58] Y. Hutabalian, S.W. Chen, W. Gierlotka, Phase equilibria of binary Ag-Se and ternary Ag-Pb-Se systems, 2023.
[59] H.L. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method, New York: Cambridge University Press, 2007.
[60] Y.I. Aliyev, Y.G. Asadov, R.D. Aliyeva, S.H. Jabarov, Polymorphic transformations and thermal expansion in AgCuSe0.5(S,Te)0.5 crystals, Semiconductors. 51 (2017) 732–739. doi:10.1134/s1063782617060045.
[61] N. Asano, K. Wase, T. Nomura, Equilibrium Diagram of the System Copper-Silver-Selenium and the Microscopic Structure of Copper Containing Silver and Selenium, J. Min. Inst. Japan. 87 (1971) 485–490. doi:10.2473/shigentosozai1953.87.1000_485.
[62] Z. Li, J. Shen, C. Muzzilo, S.L. Shang, P.H. Liao, Z.K. Liu, T.J. Anderson, Thermodynamic assessment of Ag-Cu-Se system, in: Calphad XLV Conf., 2016.
[63] Z. Li, Thermodynamic assessments and atomic layer deposition for CIGS-based thin film solar cell, University of FLorida, 2016.
[64] S. Chen, P.-S. Huang, Y. Hutabalian, J.-Y. Lin, Ag and Cu whisker formation in Ag-Cu-Te alloys, 2023.
[65] S.W. Chen, J.Y. Lin, C.M. Hsu, J.S. Chang, J.G. Duh, C.H. Wang, Ag whisker formation in Ag-In-Se alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 5281–5283. doi:10.1007/s11661-013-2030-2.
[66] W. Cao, S. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-fetzer, W.A. Oates, CALPHAD : Computer Coupling of Phase Diagrams and Thermochemistry PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad. 33 (2009) 328–342. doi:10.1016/j.calphad.2008.08.004.
[67] A.S. Pashinkin, L.M. Pavlova, Standard functions of formation and thermodynamic stability of compounds in the Cu-Te system, Inorg. Mater. 41 (2005) 1050–1054. doi:10.1007/s10789-005-0259-x.
[68] R. Blachnik, M. Lasocka, U. Walbrecht, The system copper-tellurium, J. Solid State Chem. 48 (1983) 431–438. doi:10.1016/0022-4596(83)90102-0.
[69] A.S. Pashinkin, L.M. Pavlova, Standard functions of formation and thermodynamic stability of compounds in the Cu-Te system, Inorg. Mater. 41 (2005) 1050–1054. doi:10.1007/s10789-005-0259-x.
[70] S.K. Lin, Y. Yorikado, J. Jiang, K.S. Kim, K. Suganuma, S.W. Chen, M. Tsujimoto, I. Yanada, Microstructure development of mechanical-deformation-induced Sn whiskers, J. Electron. Mater. 36 (2007) 1732–1734. doi:10.1007/s11664-007-0284-4.
[71] V.B. Rajkumar, S.W. Chen, Ag-Se phase diagram calculation associating ab−initio molecular dynamics simulation, Calphad. 63 (2018) 51–60. doi:10.1016/j.calphad.2018.08.004.
[72] Z. Li, S.L. Shang, J. Shen, P.H. Liao, Z.K. Liu, T.J. Anderson, Thermodynamic Assessment of the Ag-Se System Aided by First-Principles Calculations, J. Phase Equilibria Diffus. 39 (2018) 870–881. doi:10.1007/s11669-018-0683-7.
[73] C. Chang, Processing and characterization of copper indium selenide for photovoltaic applications, University of Florida PP - United States -- Florida, 1999.
[74] A. Dinsdale, SGTE Pure Element Database (UNARY). Version 5.0, (2009). www.sgte.net.
[75] http://www.thermocalc.com/, (n.d.).
[76] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B. 47 (1993) 558–561. doi:10.1103/PhysRevB.47.558.
[77] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter. 21 (2009). doi:10.1088/0953-8984/21/39/395502.
[78] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868. doi:10.1103/PhysRevLett.77.3865.
[79] R. Blachnik, G. Bolte, Aktivitäten von Se in geschmolzenen CuSe und AgSe Mischungen, J. Less-Common Met. 57 (1978) 21–28. doi:10.1016/0022-5088(78)90159-5.
[80] D. Feng, P. Taskinen, F. Tesfaye, Thermodynamic stability of Ag2Se from 350 to 500 K by a solid state galvanic cell, Solid State Ionics. 231 (2013) 1–4. doi:10.1016/j.ssi.2012.10.013.
[81] M. V. Voronin, E.G. Osadchii, Determination of thermodynamic properties of silver selenide by the galvanic cell method with solid and liquid electrolytes, Russ. J. Electrochem. 47 (2011) 420–426. doi:10.1134/S1023193511040203.
[82] E.G. Osadchii, E.A. Echmaeva, The system Ag-Au-Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique, Am. Mineral. 92 (2007) 640–647. doi:10.2138/am.2007.2209.
[83] F. Grønvold, S. Stølen, Y. Semenov, Heat capacity and thermodynamic properties of silver(I) selenide, oP-Ag2Se from 300 to 406 K and of cI-Ag2Se from 406 to 900 K: Transitional behavior and formation properties, Thermochim. Acta. 399 (2003) 213–224. doi:10.1016/S0040-6031(02)00470-7.
[84] Materials Project, (n.d.). https://materialsproject.org/.
[85] The Open Quantum Materials Database, (n.d.). https://oqmd.org/.
[86] NIST-JARVIS DFT, (n.d.). https://jarvis.nist.gov/.
[87] AFLOW Automatic FLow for Materials Design, (n.d.). http://aflowlib.org.
[88] Crystallography Open Database, (n.d.). http://www.crystallography.net/cod/.
[89] S.M. Wiggett, D.R. Swinbourne, R.H. Eric, G.G. Barbante, Thermodynamics of the miscibility gap in the Ag-Se system, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 30 (1999) 589–595. doi:10.1007/s11663-999-0019-4.
[90] Y. Tsuchiya, Velocity of sound and high-energy γ-ray attenuation in liquid Ag-Se alloys, J. Phys. Condens. Matter. 8 (1996) 1897–1908. doi:10.1088/0953-8984/8/12/005.
[91] S. Ohno, A.C. Barnes, J.E. Enderby, The electronic properties of liquid Ag/sub 1-x/Se/sub x/, J. Phys. Condens. Matter. 6 (1994) 5335–5350.
[92] G. Pellini, Compound of selenium with silver, Gazz. Chim. Ital. 45 (1915) 533–539.
[93] K. Friedrich, A. Leroux, The Fusion Diagram of Binary Systems Cu-Cu2Se, Ag-Ag2Se and Pb-PbSe, Metallurgie. 5 (1908) 355–358.
[94] M.C. Santhosh Kumar, B. Pradeep, Structural, electrical and optical properties of silver selenide thin films, Semicond. Sci. Technol. 17 (2002) 261–265. doi:10.1088/0268-1242/17/3/314.
[95] C.N. Zhu, P. Jiang, Z.L. Zhang, D.L. Zhu, Z.Q. Tian, D.W. Pang, Ag2Se quantum dots with tunable emission in the second near-infrared window, ACS Appl. Mater. Interfaces. 5 (2013) 1186–1189. doi:10.1021/am303110x.
[96] B.M. Mikolaichuk, A. G. Romanishin, M. V. Timchishin, X-ray investigation of system Ag2TexSe1-x, Inorg. Mater. 13 (1977) 1689–1690.
[97] D.B. Johnson, L.C. Brown, Lateral Diffusion in Ag–Te Thin‐Film Couples, J. Appl. Phys. 40 (2004) 1711–1714. doi:10.1063/1.1657836.
[98] B.C. Mohanty, P. Malar, T. Osipowicz, B.S. Murty, S. Varma, S. Kasiviswanathan, Characterization of silver selenide thin films grown on Cr-covered Si substrates, Surf. Interface Anal. 41 (2009) 170–178. doi:10.1002/sia.2985.
[99] M. Pandiaraman, N. Soundararajan, Micro-Raman studies on thermally evaporated Ag2Se thin films, J. Theor. Appl. Phys. 6 (2012) 7. doi:10.1186/2251-7235-6-7.
[100] C. Wagner, Investigations on silver sulfide, J. Chem. Phys. 21 (1953) 1819–1827. doi:10.1063/1.1698670.
[101] S.W. Chen, Y. Hutabalian, S.T. Lu, Y.S. Peng, Y.C. Lin, Interfacial reactions in In/Bi2Se3, In/Bi2Te3 and In/Bi2(Se0.2Te0.8)3 couples, J. Alloys Compd. 779 (2019) 347–359. doi:10.1016/j.jallcom.2018.11.098.
[102] L.H. Su, Y.W. Yen, C.C. Lin, S.W. Chen, Interfacial reactions in molten Sn/Cu and molten In/Cu couples, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 28 (1997) 927–934. doi:10.1007/s11663-997-0020-8.
[103] N. Mehta, M. Zulfequar, A. Kumar, Crystallization kinetics of some Se - Te - Ag chalcogenide glasses, J. Optoelectron. Adv. Mater. 6 (2004) 441–448.
[104] N. Mehta, A. Kumar, Observation of phase separation in some Se-Te-Ag chalcogenide glasses, Mater. Chem. Phys. 96 (2006) 73–78. doi:10.1016/j.matchemphys.2005.06.044.
[105] M. Ferhat, J. Nagao, Thermoelectric properties of ternary compounds thermoelectric properties of Ag2TexSex ternary compounds, in: AIP Conf. Proc., 2000: pp. 1513–1517.
[106] X. Zhang, Z. Chen, S. Lin, B. Zhou, B. Gao, Y. Pei, Promising Thermoelectric Ag5-δTe3 with Intrinsic Low Lattice Thermal Conductivity, ACS Energy Lett. 2 (2017) 2470–2477. doi:10.1021/acsenergylett.7b00813.
[107] J. Capps, F. Drymiotis, S. Lindsey, T.M. Tritt, Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te, Philos. Mag. Lett. 90 (2010) 677–681. doi:10.1080/09500839.2010.495355.
[108] F. Drymiotis, T.W. Day, D.R. Brown, N.A. Heinz, G. Jeffrey Snyder, Enhanced thermoelectric performance in the very low thermal conductivity Ag2Se0.5Te0.5, Appl. Phys. Lett. 103 (2013) 1–5. doi:10.1063/1.4824353.
[109] O. Fikar, J. Vřešťál, A. Kroupa, S.W. Chen, The study of the Pb–Se–Te phase diagram: Part 2 – The thermodynamic assessment of the Se–Te and Pb–Se–Te systems, Calphad. 74 (2021) 102309. doi:10.1016/j.calphad.2021.102309.
[110] Y. Hutabalian, S.W. Chen, Interfacial reactions in Ag/Se, Ag/Se-30at.%Te and Ag2Te/Se couples and the phase equilibria of the Ag-Se-Te ternary system, J. Alloys Compd. 889 (2021) 161580. doi:10.1016/j.jallcom.2021.161580.
[111] F.C. Kracek, L.J. Cabri, Phase relations in the Silver-Tellurium system, Am. Mineral. 51 (1966) 14–28.
[112] O. Fikar, J. Vrestal, A. Kroupa, S. Chen, Calphad The study of the Pb – Se – Te phase diagram : Part 2 – The thermodynamic assessment of the Se – Te and Pb – Se – Te systems, 74 (2021) 1–9. doi:10.1016/j.calphad.2021.102309.
[113] SGTE Unary Database, ver. 5.0, www.sgte.net/en/free-pure-substance-database, (n.d.).
[114] O. Redlich, A.T. Kister, Thermodynamics of Nonelectrolyte Solutions - x-y-t relations in a Binary System, Ind. Eng. Chem. 40 (1948) 341–345. doi:10.1021/ie50458a035.
[115] H. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: The Calphad method, Cambridge University Press, New York, 2007.
[116] V.M. Glazov, A.S. Pashinkin, V.A. Fedorov, Phase equilibria in the Cu-Se system, Inorg. Mater. 36 (2000) 641–652. doi:https://doi.org/10.1007/BF02758413.
[117] S. wen Chen, Y. Hutabalian, S. ting Lu, Y. shuo Peng, Y. cheng Lin, Interfacial reactions in In/Bi2Se3, In/Bi2Te3 and In/Bi2(Se0.2Te0.8)3 couples, J. Alloys Compd. 779 (2019) 347–359. doi:10.1016/j.jallcom.2018.11.098.
[118] D. Minić, Y. Du, M. Premović, D. Manasijević, N. Talijan, D. Milisavljević, A. Marković, A. Đorđević, M. Tomović, Experimental and thermodynamic description of ternary Bi-Cu-Ga system, J. Min. Metall. B Metall. 53 (2017) 189–201.
[119] H. jay Wu, Z. jin Dong, Phase diagram of ternary Cu-Ga-Te system and thermoelectric properties of chalcopyrite CuGaTe2 materials, Acta Mater. 118 (2016) 331–341. doi:10.1016/j.actamat.2016.07.060.
[120] N.A. Alieva, G.G. Guseinov, V.A. Gasymov, Y.I. Alyev, T.R. Mekhtiev, Structural phase transitions of polycrystalline Cu4SeTe, Inorg. Mater. 51 (2015) 661–664. doi:10.1134/S0020168515070018.
[121] I.R. Amiraslanov, K.K. Azizova, Y.R. Aliyeva, Crystal structure of Сu4SeTe, Crystallogr. Reports. 62 (2017) 215–218. doi:10.1134/S1063774517020043.
[122] B. Yang, H. Jiang, J. Zhang, B.X. Liu, H. Wang, Interfacial reaction in Cu–Se diffusion couples at low temperatures, Powder Metall. Met. Ceram. 54 (2015) 115–118. doi:10.1007/s11106-015-9687-6.
[123] W. Di Liu, L. Yang, Z.G. Chen, J. Zou, Promising and Eco-Friendly Cu2X-Based Thermoelectric Materials: Progress and Applications, Adv. Mater. 32 (2020) 87–92. doi:10.1002/adma.201905703.
[124] K. Zhao, H. Duan, N. Raghavendra, P. Qiu, Y. Zeng, W. Zhang, J. Yang, X. Shi, L. Chen, Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials, Adv. Mater. 29 (2017) 1–7. doi:10.1002/adma.201701148.
[125] M. Li, Y. Luo, G. Cai, X. Li, X. Li, Z. Han, X. Lin, D. Sarker, J. Cui, Realizing high thermoelectric performance in Cu 2 Te alloyed Cu 1.15 In 2.29 Te 4, J. Mater. Chem. A. 7 (2019) 2360–2367. doi:10.1039/c8ta10741f.
[126] J.Y. Du, A. Zemanová, Y. Hutabalian, A. Kroupa, S.W. Chen, Phase diagram of Ag–Pb–Sn system, Calphad. 71 (2020). doi:10.1016/j.calphad.2020.101997.
[127] Z.Y. Aydın, S. Malekghasemi, S. Abaci, Underpotential co-deposition of ternary Cu-Te-Se semiconductor nanofilm on both flexible and rigid substrates, Appl. Surf. Sci. Surf. Sci. 470 (2019) 658–667.
[128] F.N. Rhines, Phase diagrams in metallurgy, their development and application, McGraw-Hill, New York, 1956.
[129] S.W. Chen, Y. Hutabalian, W. Gierlotka, C.H. Wang, S.T. Lu, Phase diagram of Bi–In–Se ternary system, Calphad. 68 (2020) 101744. doi:10.1016/j.calphad.2020.101744.
[130] K.C. Hari Kumar, P. Wollants, Some guidelines for thermodynamic optimisation of phase diagrams, J. Alloys Compd. 320 (2001) 189–198. doi:10.1016/S0925-8388(00)01491-2.
[131] M. Hillert, The compound energy formalism, J. Alloys Compd. 320 (2001) 161–176.
[132] R. Schmid, Y.A. Chang, A thermodynamic study on an associated solution model for liquid alloys, Calphad. 9 (1985) 363–382. doi:10.1016/0364-5916(85)90004-5.
[133] Y. Hutabalian, S.W. Chen, Phase relationships in the Cu-Se-Te ternary system, preparation for submission, 2023.
[134] T. Zhu, H. Bai, J. Zhang, G. Tan, Y. Yan, W. Liu, X. Su, J. Wu, Q. Zhang, X. Tang, Realizing High Thermoelectric Performance in Sb-Doped Ag 2 Te Compounds with a Low-Temperature Monoclinic Structure, ACS Appl. Mater. Interfaces. 12 (2020) 39425–39433. doi:10.1021/acsami.0c10932.
[135] Y. Pei, N.A. Heinz, G.J. Snyder, Alloying to increase the band gap for improving thermoelectric properties of Ag2Te, J. Mater. Chem. 21 (2011) 18256–18260. doi:10.1039/c1jm13888j.
[136] D. Jung, K. Kurosaki, Y. Ohishi, H. Muta, S. Yamanaka, Effect of Phase Transition on the Thermoelectric Properties of Ag2Te, Mater. Trans. 53 (2012) 1216–1219.
[137] Y. Chang, J. Guo, Y.Q. Tang, Y.X. Zhang, J. Feng, Z.H. Ge, Facile synthesis of Ag2Te nanowires and thermoelectric properties of Ag2Te polycrystals sintered by spark plasma sintering, CrystEngComm. 21 (2019) 1718–1727. doi:10.1039/c8ce01863d.
[138] P. Taylor, J. Capps, F. Drymiotis, S. Lindsey, T.M. Tritt, Significant enhancement of the dimensionless thermoelectric figure of merit of the binary Ag2Te, Philos. Mag. Lett. 90 (210AD) 677–681. doi:10.1080/09500839.2010.495355.
[139] L. Li, W. Zhai, C. Wang, Y. Chen, S. Li, P. Fan, Z. Cheng, G. Yang, J. Wang, Y. Mao, Maximizing phonon scattering efficiency by Cu2Se alloying in AgCuTe thermoelectric materials, J. Mater. Chem. A. 10 (2022) 6701–6712. doi:10.1039/d1ta10692a.
[140] M. Wu, H.H. Cui, S. Cai, S. Hao, Y. Liu, T.P. Bailey, Y. Zhang, Z. Chen, Y. Luo, C. Uher, C. Wolverton, V.P. Dravid, Y. Yu, Z.Z. Luo, Z. Zou, Q. Yan, M.G. Kanatzidis, Weak Electron–Phonon Coupling and Enhanced Thermoelectric Performance in n-type PbTe–Cu2Se via Dynamic Phase Conversion, Adv. Energy Mater. 13 (2023) 1–9. doi:10.1002/aenm.202203325.
[141] G. Wu, Z. Yan, X. Wang, X. Tan, K. Song, L. Chen, Z. Guo, G.Q. Liu, Q. Zhang, H. Hu, J. Jiang, Optimized Thermoelectric Properties of Bi0.48Sb1.52Te3through AgCuTe Doping for Low-Grade Heat Harvesting, ACS Appl. Mater. Interfaces. 13 (2021) 57514–57520. doi:10.1021/acsami.1c19893.
[142] Z. Ma, T. Xu, W. Li, Y. Cheng, J. Li, Y. Wei, Q. Jiang, Y. Luo, J. Yang, High Thermoelectric Performance SnTe with a Segregated and Percolated Structure, ACS Appl. Mater. Interfaces. 14 (2022) 9192–9202. doi:10.1021/acsami.1c24075.