研究生: |
許閔竣 Hsu, Min-Chun. |
---|---|
論文名稱: |
單細胞捕獲的微流體皮升生物反應器 Microfluidic Picoliter Bioreactor for Single Cell Trapping |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
藍忠昱
Lan, Chung-Yu 黃世豪 Huang, Shih-Hao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 32 |
中文關鍵詞: | 微流體 、皮升 、生物反應器 、軟性微影 、單細胞捕獲 |
外文關鍵詞: | microfluidic, picoliter, bioreactor, soft lithography, single cell trapping |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
通常顯微鏡下的細胞培養環境是由玻片或是洋菜盤提供,適合短時間或特定實驗的細胞觀察,但無法提供穩定的環境進行長時間培養。本論文使用可以捕獲單細胞的微流體皮升生物反應器。可以提供營養液連續流動的環境,同時允許營養液進行快速的交換。我們利用su-8黃光微影製程,製作出通道中心高度為1um的模仁。再透過PDMS的軟性微影製程,利用模仁製作出一次性使用的微流體生物反應器。經過切割、打洞、與玻璃接合,將完成的微流體晶片與光學顯微鏡及溫度控制器整合在同一個平台,是一個適合進行連續培養的生物反應器。此外模仁可以重複使用,透過PDMS的軟性微影製程只需要兩天,即可製作出相同的微流體生物反應器。在我們的生物反應器中能成功捕獲單細胞的大腸桿菌,並量測細胞的成長曲線及螢光強度。
Typically slides, agar-pads are applied to provide cell culture environment under microscope. Even though suitable for short time observation, these systems are limited to more complex experiment. In this work, we provide a microfluidic picoliter bioreactor(PLBR). The device allow continuous medium flow enabling constant environment, but also fast medium changes. We use lithography process to make a mold, the center height of channel is 1um. Make a disposable PLBR by the PDMS soft lithography process. Microfluidic chip were cut, punched, assembled, and integrated with microscope and temperature controller. This is a suitable platform for continuous cultivation of microbial organisms. In addition, our su-8 mold can be reused and only need two days to make the same PLBR. In our bioreactor, we can trap E. coli on single cell level, measure cell growth and fluorescence intensity.
1.J. Monod, "The Growth of Bacterial Cultures." Annu. Rev. Microbiol. 3, 371 (1949).
2.D. B. Weibel et al., "Microfabrication meets microbiology." Nat. Rev. Microbiol. 5, 209 (2007).
3.H. M. Hegab, A. El Mekawy, and T. Stakeborg, "Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation." Biomicrofluidics 7, 21502 (2013).
4.J. R. Moffitt et al., "The single-cell chemostat: an agarose-based, microfluidic device for high throughput, single-cell studies of bacteria and bacterial communities." Lab Chip 12, 1487 (2012).
5.Z. Long et al., "Microfluidic chemostat for measuring single cell dynamics in bacteria." Lab Chip 13, 947 (2013).
6.F. K. Balagadde, L. C. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, "Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat." Science 309, 137 (2005).
7.J. Park, J. Wu, M. Polymenis, and A. Han, "Microchemostat array with small-volume fraction replenishment for steady-state microbial culture." Lab Chip 13, 4217 (2013).
8.D.Muzzey, A.V. Oudenaarden, "Quantitative time-lapse fluorescence micrscopy in single cells." Annu Rev Cell Dev Biol 25,301 (2009).
9.A. Gruenberger, C. Probst, A. Heyer, W. Wiechert, J. Frunzke, D. Kohlheyer, "Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system, setup, and operation."J Vis Exp 82,50560 (2013).
10.S. K. Sia,G. M. Whitesides, "Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies." Electrophoresis 24,3563 (2003).
11.B. Stecher, B. F., E. A. Johnson, "Single-cell microbiology: tools, technologies, and applications." Microbiol Mol Biol Rev 68,538 (2004).
12.H. M. Davey, D. B. Kell, "Flow cytometry and Cell Sorting of Heterogeneous Microbial Population." American Society for Microbiology 641 (1996).
13.H. Kortmann, P. Chasanis, L. M. Blank, J. Franzke, E. Y. Kenig, A. Schmid, " The Envirostat-a new bioreactor concept." Lab Chip 9,576 (2009).
14.D. Jin, B. Deng, J. X. Li, W. Cai, L. Chen, Q. Wu, W. H. wang, "A microfluidic device enabling high-efficiency single cell trapping." Biomicrofluidics 9,014101 (2015).
15.V. Lecault, A. K. Whote, A. Singhal, C. L. Hansen, "Microfluidics single cell analysis: from promise to practice." Curr Opin Chem Biol 16,381 (2012).
16.R., W. A., T. W. R., W. R. J, L. A. M., Z. R. N., L. Y. H., F. K., M. I. D.,D. A. "Microfluidic Device for Single-Cell Analysis." Anal Chem 94305 (2003).
17.T. Yeo, S. J. Tan, C. J. Lim, D. P. Lau, Y. W. Chua, S. S. Krisna, G. Iyer, G. S. Tan, T. K. Lim, T. S. Tam, W. T. Lim, C. T. Lim, "Microfluidic enrichment for single cell analysis of circulating tumor cells." Sci Rep 6,22076 (2016).
18.J. M. Nnik, R. Driessen, P. Galajda, J. E. Ketmer, C. Dekker, "Bacterial growth and motility in sub-micro constrictions." PNAS (2009).
19.J. E. Keymer, P. Galajda, C. Muldoon, S. Park, R. H. Austin, "Bacterial metapopulations in nanofabrication." PNAS (2006).
20.A. Grunberger, N. Paczia, C. Probst, G. Schendzielorz, L. Eggeling, S. Noack, W. Wiechert, D. Kohlheyer, "A disposable picoliter bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level." Lab Chip 12,2060 (2012).
21.J. W. Young, J. C. Locke, A. Altinok, N. Rosenfeld, T. Bacarian, P. S. Swain, E. Mjolsness, M. B. Elowitz, "Measuring single-cell gene expression dynamic in bacteria using fluorescence time-lapse microscopy." Nat Prptoc 7,80 (2011).
22.N. Ziv, N. J. Brandt, D. Gresham, "The use of chemostats in microbial systems biology." J Vis Exp 80 (2013).
23.A. Groisman, C. Lobo, H. Cho, J. K. Campbell, Y. S. Dufour, A. M. Stevens, A. Levchenko, "A microfluidic chemostat for experiments with bacteria and yeast cells. " Nat Meth 2,685 (2005) .
24.H. Lin, D. Marshall, "Microfluidic for single cell analysis." Curr Opin Biotechnol 23,110 (2012).
25.D. D. Carlo, L. P. Lee, "Dynamic Single-Cell Analysis for Quantitative Biology." Analytical Chemistry 79,7918 (2006).
26.E. Brouzes et. al, "Droplet microfluidic technology for single-cell high-throughput screening." PNAS 34,14195 (2009).
27.F. Yeshaiahu, P. Demetri, Y. Changhuei, "Basic Microfluidic and Soft Lithographic Technology." Optofluidics (2010).
28.Paliy, O., Gunasekera, T. S. Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Appl. Microbiol. Biotechnol. 73, 1169 (2007).