簡易檢索 / 詳目顯示

研究生: 邱華成
Khoo, Hwa Seng
論文名稱: 使用奈微米表面結構自我引導之微液珠操控平台
Self-Directed Microdroplet Manipulation Platform Using Nano- and Micro-Textured Surfaces
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 134
中文關鍵詞: 奈米材質相分離自我引導移動表面梯度奈米濕潤
外文關鍵詞: nanotextured, phase separation, self-directed motion, surface tension gradient, nano-wetting
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這份研究探討了在低遲滯的奈米材質表面上產生楔形梯度,而使不同體積的水液滴瞬時以及快速的移動實驗以及模型。利用0.014M甲基三氯矽烷的無水甲苯溶液與玻璃底材反應兩小時後,因相分離所產生的奈米纖維來形成超疏水性的奈米材質表面,其靜接觸角與遲滯分別為168度與6度。奈米纖維的直徑與厚度分別為34.5±9.6 nm與320.65 nm。水液滴在接觸利用化學方法產生楔形梯度圖案的奈米材質表面時,會產生瞬時自我導向移動。此表面具有兩種不同的濕潤性質以及低遲滯性。液滴的形狀與移動速度與液滴的位置及梯度的角度psi相關。此方法可傳輸的液滴體積範圍相當地廣泛,且傳送速度最快可達0.5 m/s。根據動量守恆定律所預測的液滴速度與實驗量測結果相當吻合。此研究也展示了在psi=8時,液滴在不同傾斜角的表面都會向上移動以及小於奈升液滴的移動。總結以上結果,液滴的運動主要是由表面梯度與奈米尺度的濕潤驅動的結合所產生的。這個發現可做為在藥物研發、DNA與蛋白質陣列以及單一細胞研究時,相當有用的微流體工具。為了展現其做為生物鑑定研究時的自我導向微液滴平台的成效,梯度圖案也重新安排成循環地楔形梯度陣列。最後,一個俱聲波微混合能力的完整自導向微液珠產生平台設計被提出並被成功地展現。


    This work reports on the modeling of, and experiments on, wedge-shape gradients to facilitate spontaneous and fast motions for a wide range of water droplet volume on low hysteresis nanotextured surfaces. The nanotextured surfaces were prepared by phase separation of methyltrichlorosilane in anhydrous toluene at 0.014M and reacted with the glass substrates for 2 hr to produce the quasi-network nanofibers that provide the superhydrophobicity with a static CA and hysteresis of about 168o and 6o, respectively. The typical diameter and thickness of these nanofibers were 34.5±9.6 nm and 320.65 nm, respectively. Water droplets underwent spontaneous self-directed motion upon contact with a chemically patterned nanotextured surface with wedge-shape gradient. The surface exhibited two distinct wetting properties and low hysteresis. The droplet profile and velocity were related to the droplet position and the gradient angle psi. A wide range of droplet volume could be transported and a droplet velocity as high as 0.5 m/s was achieved herein. Ascension of water droplets with all-round acclivity when□psi = 8 and a subnanoliter droplet movement were also demonstrated. Based on the principle of conservation of momentum, the predicted velocity evolutions are fairly consistent with the experimental data numerically. We conclude that it is the combination of surface tension gradient and nano-wetting actuation that governs the droplet motion. The finding could provide a valuable microfluidics tool in drug discovery, DNA and protein microarray, and single cell study. For demonstration, the gradient patterns were rearranged into an array of circulating wedge-shape gradients to act as a self-directed microdroplet platform for colorimetric study. Finally, a complete self-directed microdroplet manipulation platform with acoustic micromixing capability was also proposed and successfully demonstrated.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvii CHAPTER 1: INTRODUCTION 1 1.1 Background 1 1.2 Two Basic Flow Systems: Continuous and Digital 2 1.3 Issues on Droplet Movements 4 1.4 Objectives and Organization of the Dissertation 5 CHAPTER 2: DROPLET MANIPULATION METHODS 7 2.1 Contact Angle (CA) and Contact Angle Hysteresis 7 2.1.1 Contact Angle (CA) 7 2.1.2 Contact Angle Hysteresis 10 2.2 Droplet Movements on Flat and Textured Surfaces 12 2.2.1 Surface Roughness Modification 13 2.2.2 Chemical Modulation 16 2.2.3 Combined Chemical and Temperate Modulation 18 2.2.4 Thermal Modulation 22 2.2.5 Electrocapillary Modulation 24 2.2.6 Electric Field Modulation 25 2.2.7 Electrochemistry Modulation 27 2.2.8 Light Modulation 29 2.2.9 Combined Thermal and Surface Roughness Modulation 31 2.2.10 Acoustic Modulation 32 2.2.11 Comparisons 33 CHAPTER 3: THEORY AND MODELING OF DROPLET ACTUATION 36 3.1 Model for Droplet Actuation 36 3.2 Determination of Reff 42 CHAPTER 4: EXPERIMENTAL 46 4.1 Materials and Methods 46 4.1.1 Nanofabrication: Synthesis of Nanotextured Surfaces 46 4.1.2 Microfabrication 48 4.1.3 Analytical 51 CHAPTER 5: RESULTS AND DISCUSSION 56 5.1 Preparation and Characterization of MTS Nanotextured Surfaces 56 5.1.1 XPS Characterization 56 5.1.2 The Study of Rinsing Process 57 5.1.3 Effect of Concentrations 59 5.1.4 Effect of Reaction Time 62 5.1.5 Effect of Humidity 65 5.1.6 Feasibility of 3-D MTS Growth on Other Hydroxyl Terminated Surfaces 68 5.1.7 Structures and Transformations of MTS Nano-Architectures 69 5.1.8 Hydrophobic Behaviors and Hysteresis Analysis 73 5.2 Water Droplet Actuation on Chemically-Patterned MTS Nanotextured Surfaces 75 5.2.1 Preparation of the Gradient Surface 75 5.2.2 Determination of O2 Plasma Process Time Based on XPS, Static CA, and SEM Images 77 5.2.3 Testing of Microliter Droplet Actuations 80 5.2.4 Testing of Surface-Ascending Microliter Droplets and Subnanoliter Droplet Movement 86 5.2.5 Experimental Determination of Reff Based on Lucas-Washburn Equation 88 5.2.6 Force and Velocity Analysis of Microliter Droplet Movements 92 5.3 Self-Directed Microdroplet Platform 99 5.3.1 Open-Air and Closed-Environments for Colorimetric Study 101 5.3.2 A Complete Self-Directed Microdroplet Manipulation Platform with Micromixing Capability 103 5.4 Water Droplet Actuation on Chemically Patterned Surfaces with Self-Assembled Monolayers (SAM) 110 CHAPTER 6: CONCLUDING REMARKS AND FUTURE STUDIES 119 6.1 Concluding Remarks 119 6.2 Future Studies 121 REFERENCES 123 APPENDIX A 131

    [1] Y.-W. Lin, M.-F. Huang, and H.-T. Chang, “Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA”, Electrophoresis, 26, 2005, 320-330.
    [2] M. Pumera, “Microchip-based electrochromatography: designs and applications”, Talanta, 66, 2005, 1048-1062.
    [3] S. Tia and A. E. Herr, “On-chip technologies for multidimensional separations”, Lab Chip, 9, 2009, 2524-2536.
    [4] Y. Wang, W.-Y. Lin, K. Liu, R. J. Lin, M. Selke, H. C. Kolb, N. Zhang, X.-Z. Zhao, M. E. Phelps, C. K. F. Shen, K. F. Faull, and H.-R. Tseng, “An integrated microfluidic device for large-scale in situ click chemistry screening”, Lab Chip, 9, 2009, 2281.
    [5] K. Sato, K. Mawatari, and T. Kitamori, “Microchip-based cell analysis and clinical diagnosis system”, Lab Chip, 8, 2008, 1992-1998.
    [6] M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, “Integrated microfluidic system enabling (bio)chemical reactions with on-line MALDI-TOF mass spectrometry”, Anal. Chem., 74(16), 2002, 3972-3976.
    [7] P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery”, Nature Reviews Drug Discovery, 5, March 2006, 210-218.
    [8] B. Weigl, G. Domingo, P. LaBarre, Jay Gerlach, “Towards non- and minimally instrumented, microfluidics-based diagnostic devices”, Lab Chip, 8, 2008, 1999-2014.
    [9] J. G. E. Gardeniers and A. v. d. Berg, “Lab-on-a-chip systems for biomedical and environmental monitoring”, Anal Bioanal Chem, 378, 2004, 1700-1703.
    [10] M. McEnery, A. Tan, J. Alderman, J. Patterson, S. C. O’Mathuna and J. D. Glennon, “Liquid chromatography on-chip: progression towards a □-total analysis system”, Analyst, 125, 2000, 25–27.
    [11] W. G. Lee, U. Demirci, and A. Khademhosseini, “Microscale electroporation: challenges and perspectives for clinical applications”, Integr. Biol., 1, 2009, 242 – 251.
    [12] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics”, Lab Chip, 8, 2008, 198–220.
    [13] D. Kohlheyer, J. C. T. Eijkel, A. v. d. Berg, and R. B. M. Schasfoort, “Miniaturizing free-flow electrophoresis – a critical review”, Electrophoresis, 29, 2008, 977–993.
    [14] S. Sauer, B. M. H. Lange, J. Gobom, L. Nyarsik, H. Seitz, and H. Lehrach, “Miniaturization in functional genomics and proteomics”, Nature Reviews Genetics, 6, June 2005, 465-476.
    [15] F. Su, K. Chakrabarty, and R. B. Fair, “Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges, computer-aided design of integrated circuits and systems”, IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 25(2), February 2006, 211-223.
    [16] V. Srinivasan, V. Pamula, M. Pollack, R. B. Fair, “A digital microfluidic biosensor for multianalyte detection”, 16th IEEE MEMS, 2003, 327-330.
    [17] S. K. Cho, H. Moon, and C.-J Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits”, JMEMS, 12(1), Feb. 2003, 70-80.
    [18] A. K., Das, H. P. Kilty, P. J. Marto, G. B. Andeen, and A. Kumar, “The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes”, J. Heat Transfer, 122, 2000, 278-286.
    [19] J. W. Rose, “Dropwise condensation theory and experiment: a review”, Proc. Inst. Mech. Eng. J. Power Eng., 216, 2002, 115-128.
    [20] D. Belder, “Microfluidics with droplets”, Angew. Chem. Int. Ed., 44, 2005, 3521-3522.
    [21] I. Caelen, A. Bernard, D. Juncker, B. Michel, H. Heinzelmann, and E. Delamarche, “Formation of gradients of proteins on surfaces with microfluidic networks”, Langmuir, 16, 2000, 9125-9130.
    [22] S. Lindsay, T. Vazquez, A. Egatz-Gomez, S. Loyprasert, A. A. Garcia, and J. Wang, “Discrete microfluidics with electrochemical detection”, Analyst, 132, 412-416.
    [23] L. Gao and T. J. McCarthy, “Contact angle hysteresis explained”, Langmuir, 22, 2006, 6234-6237.
    [24] R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Microfluidic manipulation via Marangoni forces”, Appl. Phys. Lett., 85, 2004, 4237-4239.
    [25] S. Daniel, M. K. Chaudhury, and J. C. Chen, “Fast drop movements resulting from the phase change on a gradient surface”, Science, 291, 2001, 633-636.
    [26] H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage electrowetting- on-dielectric”, J. Appl. Phys., 92, 2002, 4080-4087.
    [27] J.-T. Yang, Z.-H. Yang, C.-Y. Chen, and D.-J. Yao, “Conversion of surface energy and manipulation of single droplet across micro textured surfaces”, Langmuir, 24, 2008, 9889-9897.
    [28] K. Ichimura, S.-K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface”, Science, 288, 2000, 1624-1626.
    [29] P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena Springer, New York, 2003.
    [30] H. S. Khoo and F.-G. Tseng, “Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures”, Nanotechnology, 19, 2008, 345603.
    [31] G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading”, Phys. Rev. Lett., 93, 2004, 036102.
    [32] R. N. Wenzel, “Resistance of Solid Surface to Wetting by Water”, Ind. Eng. Chem., 28, 1936, 988-994.
    [33] A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces”, Trans. Faraday Soc., 40, 1944, 546-551.
    [34] C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces”, Langmuir, 23, 2007, 8882-8890.
    [35] C. G. L. Furmidge, “Studies at phase interfaces I. the sliding of liquid drops on solid surfaces and a theory for spray retention”, J. Colloid Sci., 1, 1962, 309-324.
    [36] E. B. Dussan and R. T.-P. Chow, “On the ability of drops or bubbles to stick to non-horizontal surfaces”, J. Fluid Mech. 137, 1983, 1-29.
    [37] J. Lee, B. He, and N. Patankar, “A roughness-based wettability switching membrane device for hydrophobic surfaces”, J. Micromech. Microeng., 15, 2005, 591-600.
    [38] J.-T. Yang, J. C. Chen, K.-J. Huang, and J. A. Yeh, “Droplet manipulation on a hydrophobic textured surface with roughened patterns”, J. Microelectromech. Syst. 15(3), June 2006, 697-707.
    [39] T.-H. Chen, Y.-J. Chuang, C.-C. Chieng, and F.-G. Tseng, “A wettability switchable surface by microscale surface morphology change”, J. Micromech. Microeng., 17, 2007, 489-495.
    [40] S.-W. Lee, D. Y. Kwok, and P. E. Laibinis, “Chemical influences on adsorption-mediated self-propelled drop movement”, Phys.Rev. E, 65, 2002, 051602.
    [41] T. Yasuda, K. Suzuki, and I. Shimoyama, “Automatic transportation of a droplet on a wettability gradient surface”, μTAS 2003, 2003, 1129-1132.
    [42] S. Daniel, M. K. Chaudhury, J. C. Chen, “Fast drop movements resulting from the phase change on a gradient surface”, Science, 291, 2001, 633.
    [43] D. T. Wasan, A. D. Nikolov, and H. Brenner, “Droplets speeding on surfaces”, Science, 291, 26 January 2001, 605-606.
    [44] A. A. Darhuber, J. P. Valentino, S. M. Troian, and S. Wagner, “Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays”, JMEMS, 12(6), DECEMBER 2003, 873-879.
    [45] Y.-T Tseng, F.-G. Tseng, Y.-F. Chen, and C.-C. Chieng, “Fundamental studies on micro-droplet movement by Marangoni and capillary effects”, Sens. Act. A, 114, 2004, 292-301.
    [46] M. G. Lippmann, “Relations entre les phénomènes electriques et capillaires”, Ann. Chim. Phys., 5(11), 1875, 494–549.
    [47] M. Gunji and M. Washizu, “Self-propulsion of a water droplet in an electric field”, J. Phys. D: Appl. Phys. 38, 2005, 2417–2423.
    [48] R. Yamada and H. Tada, “Manipulation of droplets by dynamically controlled wetting gradients”, Langmuir, 21, 2005, 4254-4256.
    [49] K. Ichimura, S.-K. Oh, and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface”, Science, 288, 2000, 1624-1626.
    [50] H. Linke, B. J. Alemán, L. D. Melling, M. J. Taormina, M. J. Francis, C. C. Dow-Hygelund, V. Narayanan, R. P. Taylor, and A. Stout, “Self-propelled Leidenfrost droplets”, Phys. Rev. Lett., 96, 2006, 154502.
    [51] A. Renaudin, P. Tabourier, V. Zhang, J.C. Camart, and C. Druon, “SAW nanopump for handling droplets in view of biological applications”, Sens. Act. B, 113, 2006, 389–397.
    [52] J. Berthier and P. Silberzan, Microfluidics for Biotechnology: Capillarity and Wetting Phenomena, Artech House, Norwood, 2006.
    [53] A. Siebold, M. Nardin, J. Schultz, A. Walliser, and M. Oppliger, “Effect of dynamic contact angle on capillary rise phenomena”, Coll. Surf. A: Physicochem. Eng. Aspects, 161, 2000, 81-87.
    [54] E. P. Kalogianni, T. Savopoulos, T. D. Karapantsios, and S. N. Raphaelides, “A dynamic wicking technique for determining the effective pore radius of pregelatinized starch sheets”, Colloid Surf. B: Biointer., 35, 2004, 159-167.
    [55] A. Siebold, A. Walliser, M. Nardin, J. Schultz, in: L. T. Drzal, H. P. Schreiber (Eds), Proceedings of the 20th Anniversary Meeting of the Adhesion Society, Hilton Head Island, February 23-26, 1997, 645.
    [56] L. R. Fisher and P. D. Lark, “Experimental study of the Washburn equation for liquid flow in very fine capillaries”, J. Colloid Interface Sci., 69(3), 1979, 486-492.
    [57] E. Chibowski and L. Holysz, “Use of the Washburn equation for surface free energy determination”, Langmuir, 8, 1992, 710-716.
    [58] R. J. Good, “The rate of penetration of a fluid into a porous body initially devoid of adsorbed material (1, 2)”, J. Colloid Interface Sci., 42(3), 1973, 473-477.
    [59] V. Roucoules, A. Ponche, A. Geissler, F. Siffer, L. Vidal, S. Ollivier, M. F. Vallat, P. Marie, J. C. Voegel, P. Schaaf, and J. Hemmerlé J, “Changes in silicon elastomeric surface properties under stretching induced by three surface treatments”, Langmuir, 23, 2007, 13136-13145.
    [60] L. Gao and T. J. McCarthy, “A perfectly hydrophobic surface (□A /□R =180o/180o)”, J. Am. Chem. Soc., 128, 2006, 9052-9053.
    [61] J.-M. Lim, G.-R. Yi, J. H. Moon, C. J. Heo, and S.-M. Yang, “Superhydrophobic films of electrospun fibers with multiple-scale surface morphology”, Langmuir, 23, 2007, 7981-7989.
    [62] A. Y. Fadeev and T. J. McCarthy, “Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon”, Langmuir, 16, 2000, 7268-7274.
    [63] J. Sagiv, “Organized monolayer by adsorption.1.formation and structure of oleophobic mixed monolayer on solid surface”, J. Am. Chem. Soc.,102, 1980, 92-98.
    [64] H. Brunner, T. Vallant, U. Mayer, and H. Hoffman, “Substrate effects on the formation of alkylsiloxane monolayers”, Langmuir, 15, 1999, 1899-1901.
    [65] L. Gao and T. J. McCarthy, “(CH3)3SiCl/SiCl4 azeotrope grows superhydrophobic nanofilaments”, Langmuir, 24, 2008, 362-364.
    [66] J. Jopp, H. Grüll, and R. Yeruslami-Rozen, “Wetting behavior of water droplets on hydrophobic microtextures of comparable size”, Langmuir, 20, 2004, 10015-10019.
    [67] A. Lafuma and D. Quéré, “Superhydrophobic states”, Nat. Mater., 2, 2003, 457-460.
    [68] B. He, N. A. Patankar, and J. Lee, “Multiple equilibrium droplet shapes and design criterion for rough hydrophobicsurfaces”, Langmuir, 19, 2003, 4999-5003.
    [69] M. Callies, Y. Chen, F. Marty, A. Pépin, and D. Quéré, “Microfabricated textured surfaces for super-hydrophobicity investigations”, Microelectron. Eng., 78-79, 2005, 100-105.
    [70] Q.-S.Zheng, Y. Yu, and Z.-H. Zhao, “Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces”, Langmuir, 21, 2005, 12207-12212.
    [71] M. Nosonovsky and B. Bhushan B, “Roughness optimization for biomimetic superhydrophobic surfaces”, Microsyst. Technol., 11, 2005, 535-549.
    [72] X. Zhang, B. Kong, O. K. C. Tsui, X. Yang, Y. Mi, C. M. Chan, and B. Xu, “Effect of pattern topology on the self-cleaning properties of textured surfaces”, J. Chem. Phys., 127, 2007, 014703.
    [73] T. H. Solomon and I. Mezić, “Uniform resonant chaotic mixing in fluid flows”, Nature, 425, 2003, 376-380.
    [74] T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large scale integration”, Science, 298, 2002, 580-584.
    [75] J. M. Ottino and S. Wiggins, “Introduction: mixing in microfluidics”, Philos. Transact. A Math. Phys. Eng. Sci., 362, 2004, 923-935.
    [76] S. Wiggins and J. M. Ottino, “Founda¬tions of chaotic mixing”, Philos. Transact. A Math. Phys. Eng. Sci., 362, 2004, 937-970.
    [77] S. Yao and O. Bakajin, “Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics”, Anal. Chem., 79, 2007, 5753-5759.
    [78] I.-D. Yang, Y.-F. Chen, F.-G. Tseng, H.-T. Hsu, and C.-C. Chieng, “Surface tension driven and 3-D vortex enhanced rapid mixing microchamber”, J. Microelectromech. Syst., 15(3), June 2006, 659-670.
    [79] H.-Y. Wu and C.-H. Liu, “A novel electrokinetic micromixer”, Sens. Act. A, 118, 2005, 107-115.
    [80] A. Wixforth, C. Strobl, C. Gauer, A. Toegl, J. Scriba, and Z. v. Guttenberg, “Acoustic manipulation of small droplets”, Anal. Bioanal. Chem., 379, 2004, 982-991.
    [81] P. Tho, R. Manasseh, and A. Ooi, “Cavitation microstreaming patterns in single and multiple bubble systems”, J. Fluid Mech., 576, 2007, 191-233.
    [82] P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles”, Nature, 423, 2003, 153-156.
    [83] R. H. Liu, R. Lenigk, R.L. Druyor-Sanchez, J. Yang, and P. Grodzinski, “Hybrid¬ization enhancement using cavitation microstreaming”, Anal. Chem., 75, 2003, 1911-1917.
    [84] R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, “Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection”, Anal. Chem., 76, 2004, 1824-1831.
    [85] N. Riley, “Steady streaming”, Annu. Rev. Fluid Mech., 33, 2001, 43-65.
    [86] P. Marmottant, J. P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, “ Microfluidics with ultrasonic-driven bubbles”, J. Fluid Mech., 568, 2006, 109-118.
    [87] G.-Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S.-Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography”, Langmuir, 21(4), 2005, 1158-1161.
    [88] http://www.ifm.liu.se/applphys/ftir/sams.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE