簡易檢索 / 詳目顯示

研究生: 陳香安
Chen, Hsiang-An
論文名稱: 表面電漿子於單根金奈米線及金奈米多孔性薄膜之遠場及近場光學特性研究
Plasmonic Properties of Single Gold Nanowires and a Nanoporous Gold Film Investigated by Far-Field and Near-Field Optical Techniques
指導教授: 林鶴南
Lin, Heh-Nan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 90
中文關鍵詞: 表面電漿子金奈米線金奈米多孔性薄膜
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In recent years, noble metal nanostructures have attracted increasing interests in the development of sensitive biosensors and novel photonic devices due to their pronounced optical properties related to surface plasmons (SPs).

    We report a study of localized surface plasmon resonance (LSPR) in single Au nanowires (NWs) created sequentially by atomic force microscopy nanolithography on a thin polymer resist, metal deposition and lift-off process. The widths and thicknesses of the single NWs are less than 110 nm and 30 nm, respectively, and the lengths are of a few μm. In the far-field scattering spectrum of a single NW, two LSPR peaks at around 630 and 490 nm in wavelength are observed and the intensity is strongest when the incident electric field is parallel to the length direction of a NW. With the aid of near-field scanning optical microscopy, it is found that surface plasmon polaritons (SPPs) are generated and propagating along the length direction when the incident electric field is perpendicular, whereas localized surface plasmons (LSPs) are generated when parallel. This assertion is consistent with the far-field scattering spectra. In near-field optical images, both LSPs and SPPs have a periodic wavelength of around 480 nm. This value is in good agreement with the calculated SP wavelength of 471 nm at the air-Au interface at an incident wavelength of 532 nm.

    The current results of polarization dependence from far-field and near-field measurements are in strong contrast to previous results of lithographically fabricated NWs in literatures. The polarization dependence of our NWs is due to the lack of well-defined axes in the cross-section of a NW from transmission electron microscopy analysis. The present work reveals the interesting variation of LSPR modes in a single NW due to different fabrication techniques.

    The single NWs has also been applied to perform the sensitivity of the medium and the chemical sensing of an alkanethiolate self-assembled monolayer, octadecanethiol by LSPR peak shift. The present work reveals interesting variation of LSPR modes in single metal NWs that are potentially valuable for future plasmonic applications.

    Furthermore, a nanoporous Au film is prepared sequentially by deposition of gold and copper, high temperature annealing, and chemical etching for the investigation of plasmonic properties on random nanoporous films which are commonly used as surface enhanced Raman scattering (SERS) substrates. The film has a thickness of 20 nm and randomly distributed pores with sizes ranging between 15 and 350 nm, which are suitable for the generation of SPP waves in the film. In far-field measurements, the nanoporous film has a different transmittance and a lower reflectance when compared with those of a 20 nm thick plain Au film in the wavelength range between 400 and 1000 nm. As a result, the absorbance of the nanoporous film is much higher and can be attributed to the conversion of incident light into SPP waves. In the dark-field scattering spectrum, a broad peak appears at around 630 nm and corresponds to the resonance peak of the aperture plasmon mode of the pores in the film.

    From the near-field results, the local transmitted optical field distribution on the film is observed and reveals the generation of SPPs. Furthermore, two types of local field enhancement are observed. The first type has a small spatial distribution of around 200 nm and an enhancement factor of 4. The second type has a large spatial distribution of around 1 µm and an enhancement factor of 2. The two types of enhancement correspond to strong and weak SPP localization, respectively. The field enhancement effect on the nanoporous film can be utilized for surface enhanced Raman scattering and a clear Raman spectrum in a 10−6 M Rhodamine 6G solution has been obtained.


    Table of Contents List of Figures IV List of Tables IX Acknowledgments X 中文摘要 XI Abstract XIII Chapter 1 Introduction 1 1.1 Surface Plasmon Polaritons and Localized Surface Plasmons 1 1.2 Metal Nanostructures and Nanostructured Metal Films 3 1.3 Motivation 5 Chapter 2 Literature Review 6 2.1 Fundamental Properties of Surface Plasmons 6 2.1.1 Excitation of Surface Plasmon Polaritons 8 2.1.2 Localization of Surface Plasmon Polaritons 10 2.1.3 Excitation of Localized Surface Plasmons 14 2.1.4 Mie and Gans Theory for Small Particles 15 2.2 Plasmonic Nanostructures 19 2.2.1 Metal Nanoparticles 19 2.2.2 Metal Nanowires 21 2.2.3 Nanostructured Metal Films 23 2.2.3 Isolated Nanoholes 24 2.3 Plasmonic Applications 26 2.3.1 Chemical Senors and Biosensors 26 2.3.2 Surface-Enhanced Raman Scattering 28 2.4 Fabrication of Metal Nanostructures 30 2.4.1 Atomic Force Microscopy Nanolithography 30 2.5 Near-Field Scanning Optical Microscopy 33 Chapter 3 Experimental Instruments and Procedures 34 3.1 Experimental Instruments 34 3.1.1 Atomic Force Microscope 34 3.1.2 E-Beam Evaporation System 34 3.1.3 Double Tube Furnace 35 3.1.4 Optical Microscope 36 3.1.5 Optical Spectrometer 36 3.1.6 Raman Spectroscopy 37 3.1.7 Near-Field Scanning Optical Microscope (NSOM) 38 3.1.8 Transmission Electron Microscope (TEM) 40 3.1.9 Dual Beam System 40 3.1.10 Scanning Electron Microscope (SEM) 41 3.2 Experimental Procedures 42 3.2.1 Fabrication of Gold Nanowires and Nanodot Arrays 42 3.2.2 Fabrication of a Gold Nanoporous Film 43 Chapter 4 Results and Discussion: Localized Surface Plasmons and Surface Plasmon Polaritons in Single Gold Nanowires 45 4.1 System Verification by Mie Theory 46 4.2 Far-Field Optical Properties: Geometric Dependence 48 4.3 Far-Field Optical Properties: Polarization Dependence 53 4.4 Near-Field Optical Properties 59 4.5 Chemical Sensing and the Sensitivity of Medium 63 Chapter 5 Results and Discussion: Plasmonic Properties of a Nanoporous Gold Film 65 5.1 Surface Morphology 66 5.2 Far-Field Optical Properties 67 5.3 Near-Field Optical Properties 69 5.4 Raman Spectroscopy 75 Chapter 6 Conclusions 76 6.1 Localized Surface Plasmons and Surface Plasmon Polaritons in Single Gold Nanowires 76 6.2 Plasmonic Properties of a Nanoporous Gold Film 78 References 79 Curriculum Vitae 85 Publication 89

    1. Haes, A. J.; Stuart, D. A.; Nie, S. M.; Van Duyne, R. P. J. Fluoresc. 2004, 14, 355−367.
    2. Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685−1706.
    3. Pitarke, J. M.; Silkin, V. M.; Chulkov, E. V.; Echenique, P. M. Rep. Prog. Phys. 2007, 70, 1−87.
    4. Yu, C.; Irudayaraj, J. Biophys. J. 2007, 93, 3684−3692.
    5. Stoermer, R. L.; Cederquist, K. B.; McFarland, S. K.; Sha, M. Y.; Penn, S. G.; Keating, C. D. J. Am. Chem. Soc. 2006, 128, 16892−16903.
    6. Luo, W.; van der Veer, W.; Chu, P.; Mills, D. L.; Penner, R. M.; Hemminger, J. C. J. Phys. Chem. C 2008, 112, 11609−11613.
    7. Yan, B.; Thubagere, A.; Premasiri, W. R.; Ziegler, L. D.; Dal Negro, L.; Reinhard, B. M. ACS Nano 2009, 3, 1190−1202.
    8. Ko, H.; Singamaneni, S.; Tsukruk, V. V. Small 2008, 4, 1576−1599.
    9. Yonzon, C. R.; Stuart, D. A.; Zhang, X. Y.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P. Talanta 2005, 67, 438−448.
    10. Lang, X. Y.; Guan, P. F.; Zhang, L.; Fujita, T.; Chen, M. W. Appl. Phys. Lett. 2010, 96, 073701.
    11. Zayats, A. V.; Smolyaninov, II J. Opt. A-Pure Appl. Opt. 2003, 5, S16−S50.
    12. Maier, S. A.; Atwater, H. A. J. Phys. D-Appl. Phys. 2005, 98, 011101.
    13. Bozhevolnyi, S. I. Phys. Rev. B 1996, 54, 8177−8185.
    14. Coello, V. Surf. Rev. Lett. 2008, 15, 867−879.
    15. Lin, H.-Y.; Huang, C.-H.; Chang, C.-H.; Lan, Y.-C.; Chui, H.-C. Opt. Express 18, 2009, 165−172.
    16. Lereu, A. L.; Sanchez-Mosteiro, G.; Ghenuche, P.; Quidant, R.; van Hulst, N. F. J. Microsc.-Oxf. 2008, 229, 254−258.
    17. Chang, Y.-C.; Chen, H.-W.; Chang, S.-H. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1536−1539.
    18. Mie, G. Ann. Phys.-Berlin 1908, 25, 377−445.
    19. Gans, R. Ann. Phys.-Berlin 1912, 37, 881−900.
    20. Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A. Chem. Phys. Lett. 2000, 317, 517−523.
    21. Sieb, N. R.; Wu, N.-C.; Majidi, E.; Kukreja, R.; Branda, N. R.; Gates, B. D. ACS Nano 2009, 3, 1365−1372.
    22. Ye, J.; Chen, C.; Van Roy, W.; Van Dorpe, P.; Maes, G.; Borghs, G. Nanotechnology 2008, 19, 325702.
    23. Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; de Abajo, F. J. G. Phys. Rev. Lett. 2003, 90, 057401.
    24. Cleary, A.; Clark, A.; Glidle, A.; Cooper, J. M.; Cumming, D. Microelectron. Eng. 2009, 86, 1146−1149.
    25. Zhang, X. Y.; Hicks, E. M.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Nano Lett. 2005, 5, 1503−1507.
    26. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212−4217.
    27. Grand, J.; de la Chapelle, M. L.; Bijeon, J. L.; Adam, P. M.; Vial, A.; Royer, P. Phys. Rev. B 2005, 72, 033407.
    28. Noguez, C. J. Phys. Chem. C 2007, 111, 3806−3819.
    29. Orendorff, C. J.; Sau, T. K.; Murphy, C. J. Small 2006, 2, 636−639.
    30. Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 1999, 103, 9846−9853.
    31. Tam, F.; Moran, C.; Halas, N., J. Phys. Chem. B 2004, 108, 17290−17294.
    32. Miller, M. M.; Lazarides, A. A. J. Phys. Chem. B 2005, 109, 21556−21565.
    33. Lockyear, M. J.; Hibbins, A. P.; Sambles, J. R.; Lawrence, C. R. J. Opt. A-Pure Appl. Opt. 2005, 7, S152−S158.
    34. Dragnea, B.; Szarko, J. M.; Kowarik, S.; Weimann, T.; Feldmann, J.; Leone, S. R. Nano Lett. 2003, 3, 3−7.
    35. Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. Accounts Chem. Res. 2008, 41, 1049−1057.
    36. Xiang, G.-S.; Zhang, N.; Zhou, X.-D. Nanoscale Res. Lett. 2010, 5, 818−822.
    37. Kucheyev, S. O.; Hayes, J. R.; Biener, J.; Huser, T.; Talley, C. E.; Hamza, A. V. Appl. Phys. Lett. 2006, 89, 053102.
    38. Qian, L. H.; Yan, X. Q.; Fujita, T.; Inoue, A.; Chen, M. W. Appl. Phys. Lett. 2007, 90, 153120.
    39. Ding, Y.; Erlebacher, J. J. Am. Chem. Soc. 2003, 125, 7772−7773.
    40. Jurczakowski, R.; Hitz, C.; Lasia, A. J. Electroanal. Chem. 2004, 572, 355−366.
    41. Chen, Y.-J.; Hsu, J.-H.; Lin, H.-N. Nanotechnology 2005, 16, 1112−1115.
    42. Hsu, J.-H.; Lin, C.-Y.; Lin, H.-N. J. Vac. Sci. Technol. B 2004, 22, 2768−2771.
    43. Kim, H. M.; Xiang, C. X.; Guell, A. G.; Penner, R. M.; Potma, E. O. J. Phys. Chem. C 2008, 112, 12721−12727.
    44. Xu, Q. B.; Bao, J. M.; Capasso, F.; Whitesides, G. M. Angew. Chem. 2006, 118, 3713−3717.
    45. Zhou, H.; Jin, L.; Xu, W. Chin. Chem. Lett. 2007, 18, 365−368.
    46. Prikulis, J.; Hanarp, P.; Olofsson, L.; Sutherland, D.; Kall, M. Nano Lett. 2004, 4, 1003−1007.
    47. Yin, L.; Vlasko-Vlasov, V. K.; Rydh, A.; Pearson, J.; Welp, U.; Chang, S. H.; Gray, S. K.; Schatz, G. C.; Brown, D. B.; Kimball, C. W. Appl. Phys. Lett. 2004, 85, 467−469.
    48. Seal, K.; Nelson, M. A.; Ying, Z. C.; Genov, D. A.; Sarychev, A. K.; Shalaev, V. M. Phys. Rev. B 2003, 67, 035318.
    49. Seal, K.; Sarychev, A. K.; Noh, H.; Genov, D. A.; Yamilov, A.; Shalaev, V. M.; Ying, Z. C.; Cao, H. Phys. Rev. Lett. 2005, 94, 226101.
    50. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824−830.
    51. Dionne, J. A.; Sweatlock, L. A.; Atwater, H. A.; Polman, A. Phys. Rev. B 2005, 72, 075405.
    52. Ritchie, R. H. Phys. Rev. 1957, 106, 874−881.
    53. Bozhevolnyi, S. I.; Smolyaninov, II; Zayats, A. V. Phys. Rev. B 1995, 51, 17916−17924.
    54. Huang, H. J.; Yu, C. P.; Chang, H. C.; Chiu, K. P.; Chen, H. M.; Liu, R. S.; Tsai, D. P. Opt. Express 2007, 15, 7132−7139.
    55. Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870−1901.
    56. Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409−453.
    57. Jain, P. K.; Huang, W. Y.; El-Sayed, M. A. Nano Lett. 2007, 7, 2080−2088.
    58. Kang, T.; Yoon, I.; Jeon, K. S.; Choi, W.; Lee, Y.; Seo, K.; Yoo, Y.; Park, Q.-H.; Ihee, H.; Suh, Y. D.; Kim, B. J. Phys. Chem. C 2009, 113, 7492−7496.
    59. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Nano Lett. 2003, 3, 1229−1233.
    60. Du, C. L.; You, Y. M.; Kasim, J.; Ni, Z. H.; Yu, T.; Wong, C. P.; Fan, H. M.; Shen, Z. X. Opt. Commun. 2008, 281, 5360−5363.
    61. Ge, X. B.; Wang, R. Y.; Liu, P. P.; Ding, Y. Chem. Mat. 2007, 19, 5827−5829.
    62. Park, T. H.; Mirin, N.; Lassiter, J. B.; Nehl, C. L.; Halas, N. J.; Nordlander, P. ACS Nano 2008, 2, 25−32.
    63. Rindzevicius, T.; Alaverdyan, Y.; Sepulveda, B.; Pakizeh, T.; Käll, M.; Hillenbrand, R.; Aizpurua, J.; de Abajo, F. J. G. J. Phys. Chem. C 2007, 111, 1207−1212.
    64. Chang, S. H.; Gray, S. K.; Schatz, G. C. Optics Express 2005, 13, 3150−3165.
    65. Lee, H. J.; Goodrich, T. T.; Corn, R. M. Anal. Chem. 2001, 73, 5525−5531.
    66. Hall, D. Anal. Biochem. 2001, 288, 109−125.
    67. Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Biosens. Bioelectron. 2001, 16, 121−131.
    68. Horacek, J.; Skladal, P. Anal. Chim. Acta 1997, 347, 43−50.
    69. Kasemo, B. Curr. Opin. Solid State Mat. Sci. 1998, 3, 451−459.
    70. Yu, C. X.; Ganjoo, A.; Jain, H.; Pantano, C. G.; Irudayaraj, J. Anal. Chem. 2006, 78, 2500−2506.
    71. Polla, D. L.; Erdman, A. G.; Robbins, W. P.; Markus, D. T.; Diaz-Diaz, J.; Rizq, R.; Nam, Y.; Brickner, H. T.; Wang, A.; Krulevitch, P., Annu. Rev. Biomed. Eng. 2000, 2, 551−576.
    72. Maxwell, D. J.; Taylor, J. R.; Nie, S. M. J. Am. Chem. Soc. 2002, 124, 9606−9612.
    73. Fleischm, M.; Hendra, P. J.; McQuilla, A. J. Chem. Phys. Lett. 1974, 26, 163−166.
    74. Nie, S. M.; Emery, S. R. Science 1997, 275, 1102−1106.
    75. Dieringer, J. A.; Lettan, R. B.; Scheidt, K. A.; Van Duyne, R. P. J. Am. Chem. Soc. 2007, 129, 16249−16256.
    76. Lin, W.-C.; Huang, S.-H.; Chen, C.-L.; Chen, C.-C.; Tsai, D. P.; Chiang, H.-P. Appl. Phys. A-Mater. Sci. Process. 2010, 101, 185−189.
    77. Sohn, L. L.; Willett, R. L. Appl. Phys. Lett. 1995, 67, 1552−1554.
    78. Bouchiat, V.; Esteve, D. Appl. Phys. Lett. 1996, 69, 3098−3100.
    79. Betzig, E.; Trautman, J. K.; Harris, T. D.; Weiner, J. S.; Kostelak, R. L. Science 1991, 251, 1468−1470.
    80. de Bäkker, B. I.; de Lange, F.; Cambi, A.; Korterik, J. P.; van Dijk, E.; van Hulst, N. F.; Figdor, C. G.; Garcia-Parajo, M. F., ChemPhysChem 2007, 8, 1473−1480.
    81. Krenn, J. R.; Weeber, J. C. Philos. Trans. R. Soc. London, Ser. A 2004, 362, 739−756.
    82. Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R. Phys. Rev. Lett. 2005, 95, 257403.
    83. Ozbay, E. Science 2006, 311, 189−193.
    84. Gopinath, A.; Boriskina, S. V.; Feng, N. N.; Reinhard, B. M.; Dal Negro, L. Nano Lett. 2008, 8, 2423−2431.
    85. Curry, A.; Nusz, G.; Chilkoti, A.; Wax, A. Opt. Express 2005, 13, 2668−2677.
    86. Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073−3077.
    87. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668−677.
    88. Johnson, P. B.; Christy, R. W. Phys. Rev. B 1972, 6, 4370−4379.
    89. Ni, W. H.; Chen, H. J.; Kou, X. S.; Yeung, M. H.; Wang, J. F. J. Phys. Chem. C 2008, 112, 8105−8109.
    90. Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H. ACS Nano 2008, 2, 687−692.
    91. Lin, H.-Y.; Chen, H.-A.; Lin, H.-N. Analytical Chemistry 2008, 80, 1937−1941.
    92. Maaroof, A. I.; Gentle, A.; Smith, G. B.; Cortie, M. B. J. Phys. D-Appl. Phys. 2007, 40, 5675−5682.
    93. E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE