研究生: |
陳冠宇 |
---|---|
論文名稱: |
台灣分離之Barnettozyma 及Cyberlindnera菌株之鑑定、種內親緣關係性及族群遺傳結構探討 |
指導教授: | 李清福 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
中文關鍵詞: | 殺手酵母菌 、基因單型歧異度 、核苷酸歧異度 、遺傳分化 、基因交流 |
外文關鍵詞: | killer yeast, haplotype diversity, nucleotide diversity, gene differentiation, gene flow |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以台灣所分離之殺手酵母菌Barnettozyma californica及Cyberlindnera saturnus complex為對象,其中Barnettozyma californica利用三段基因序列(LSU D1/D2 domain;Internal transcribed spacer of rDNA, ITS;Cytochrome C oxidase subunit II, CoxII)組合,而Cyberlindnera saturnus complex則以細胞骨架(actin as cytoskeleton)基因做為分子標誌,進行種內之親緣性關係及遺傳結構分析。
B. californica及Cyber. saturnus complex皆分離自台灣山區土壤、植物葉面及菇類子實體,所分離而來的菌株,經由大單元核糖體DNA(LSU ribosomal DNA)D1/D2區域序列比對分析,分別鑑定出B. californica及其他未描述菌種sp2, sp3, sp13, sp27及親緣關係性相關之菌株-Candida sp50.及Candida sp53.共45株;另有56株鑑定為Cyber. saturnus complex之5種分類項及相關無性世代Candida菌種,並進行親緣關係探討籍資料分析與殺手毒性分析。
將分子變異做階層體制分析(hierarchical analysis)後,發現兩菌種具有明顯的族群結構。B. californica可劃分為8群、39個個體、22個基因單型、369個基因多型位、基因單型歧異度(haplotype diversity, h)為0.907±0.001%,而核苷酸歧異度(nucleotide diversity, π)則為2.73%。另Cyber. saturnus complex可劃分為4群、48個個體、31個基因單型、166個基因多型位、基因單型歧異度(h)為0.916±0.001%、核苷酸歧異度(π)則為2.91%,兩菌屬均具有高歧異度則表示該兩菌屬,屬內種間具有有效族群量。另外根據遺傳分化值(Fst)及基因交流值(Nm)也顯示遺傳分化明顯的結果(B. californica, Fst = 0.3~0.7, Nm = 0~1;Cyber. saturnus complex, Fst = 0.8, Nm = 0~0.07),兩菌在種內顯示高度遺傳分化及低的基因交流表示同種之間其種內存在一定的差別,意指種內各群可以明顯區分。進一步以中性試驗檢測探討導致兩菌種種內分群之因素,利用Tajima`s D和Fu and Lis D* and F*值評估,結果顯示B. californica 部分族群和Cyber. saturnus complex以Cyberlindnera saturnus及Cyberlindnera mrakii偏離中性理論及根據高基因單型歧異度和低核苷酸歧異度,表示這兩菌種有族群擴張現象,而且可能曾經經歷過開拓者效應或者是瓶頸效應且是在近期內族群建立後並快速擴散。本實驗結果,根據高基因單型歧異度、低核苷酸歧異度及低基因交流值與高程度的遺傳分化,顯示出Barnettozyma californica與Cyberlindnera saturnus complex具有達到變種及種化的程度。
The aim of this study is to identify the yeasts of Barnettozyma californica and Cyberlindnera saturnus complex and to analyze intraspecific phylogenetic relationship and population structure of the kill yeasts, isolated from Taiwan. The Phylogenetic trees of B. californic were constructed based on multiple sequences of large subunit (LSU) D1/D2 domain, internal transcribed spacer (ITS) of rDNA ITS and cytochrome C oxidase subunit II (CoxII), and actin gene for Cyber. saturnus complex. All the strains of B. californica and Cyber. saturnus complex isolated from soil, leaves, and fruiting body of murshrooms in the mountain area of Taiwan, were identified based on sequence of the LSU D1/D2 domain of (LSU) rRNA gene, morphology and physiology. Among the strains isolated, 38 strains of B. californica, 8 of Barnettozyma sp2, sp3, sp13, sp27 and sp50 were authenti cated as Barnettozyma species, and 56strains were identified as one of five species in Cyberlindnera saturnus complex or related Candida species. A hierarchical analysis of molecular variance revealed that differentiation of genetic structure are significant among populations of the species.
B. californica is classidfied into 8 groups, 39 unity, 22 haplotypes and 369 polymorphism, and haplotype diversity(h) and nucleotide diversity(π) are (h)= 0.907±0.001%, (π)= 2.73%. Strains of C. saturnus complex are classidfied into 4 groups, 48 unity, 31 haplotypes and 166 polymorphism, and haplotype diversity(h) and nucleotide diversity(π) are (h)= 0.916±0.001%, (π)= 2.91%. According to the data, they are large effective population sizes, respectively. Moreover, the two species reveal significant in gene differentiation (Fst) and gene flow (Nm). (B. californica:Fst = 0.3~1, Nm = 0~1;Cyber. saturnus complex:Fst = 0.8, Nm = 0~0.07), because the two species demonstrate low gene flow and high gene differentiation, indicating that they has intraspecific differentiation. The differentiation among genetic population were furtherly evaluated by Tajima`s D and Fu and Lis D* and F* values with neutral tests. The results show that the group3 of B. californica, Cyber. saturnus and Cyber. mrakii showed significant deviation neutral model, because of the high haplotype diversity and the low nucleotide diversity.The results show the significant deviation neutral tests proposed that the two species happened resulting rapid population expansion from founder events or bottleneck events.
According to high haplotype diversity(h), low nucleotide diversity(π), high gene differentiation (Fst) and low gene flow (Nm). The results show that B. californica and Cyber. saturnus complex with achieve variety and specisity.
1. 李彥瑩。2010。臺灣高山湖泊肥胖蕩鏢水溞(橈足綱:哲水溞目)族群遺傳結構與親緣地理學分析。國立新竹教育大學應用科學系碩士學位論文。
2. 林宗鍵。2008。唇魚骨的親緣地理研究。國立成功大學生命科學系碩博士班博士學位論文。
3. 姚政旭。2009。分子生物技術在酵母菌鑑定上的應用。國立新竹教育大學應用科學系碩士學位論文。
4. 柳怡如。2010。子囊酵母菌種之分子鑑定與Vanderwaltozyma屬之系統分類學研究。國立新竹教育大學應用科學系碩士學位論文。
5. 謝智雯。2009。台灣南部地區土壤酵母菌種類分佈與調查。國立新竹教育大學應用科學系碩士學位論文。
6. Campbell N. A. and Reece J.B. (2007) Biology.
7. Aa E., Townsend J. P., Adams R. I., Nielsen K. M., Taylor J. W.(2006)Population structure and gene evolution in Saccharomyces cerevisiae. Yeast Research. 6: 702–15.
8. Abrunhosa L., Paterson R. R. M., Kozakiewicz Z., Lima N., Venaˆncio A. (2001) Mycotoxin production from fungi isolated from grapes. Applied Microbiology. 32: 240-242.
9. Adler J., Wood H. A., and Bozarth R. F. (1976) Virus-like particles from killer, neutral, and sensitive strains of Saccharomyces cerevisiae. Virology. 17: 472–476.
10. Barnett J. A., Payne R.W., and Yarrow D. (2000) Yeasts: Characteristics and Identification, 3rd edn. Cambridge University Press, Cambridge.
11. Belloch C., Querol A., Garcia M. D., and Barrio E. (2000) Phylogeny of the genus Kluyveromyces inferred from the mithochondrial cytochrome-c oxidase II gene. Evolutionary Microbiology. 50: 405-416.
12. Bozarth R. F., Koltin Y., Weissman M. B., Parker R. L., Dalton R. E., and Steinlauf R. (1981) The molecular weight and packaging of dsRNAs in the Mycovirus from Ustilago maydis killer strains. Virology. 118: 492–502.
13. Bussey H. (1991) K1 killer toxin, a pore-forming protein from yeast. Molecular Microbiology. 5: 2339–2343.
14. Essendoubi M., Toubas D., Bouzaggou M., Pinon J. M., Manfait M., Sockalingum G. D. (2005) Rapid identification of Candida species by FT-IR microspectroscopy. Biochimica et Biophysica Acta. 1724: 239-247.
15. Excoffier L., and Smouse P. E. (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics. 136: 343-359.
16. Excoffier L., Smouse P. E., Quattro J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA data. Genetics. 131: 479-491.
17. Fay J. C., and Benavides J. A. (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1:66-71.
18. Felsenstein J. (1995) Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783-791.
19. Fischer G., Braun S., Thissen R., Dott W. (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. Microbiology. 64: 63-77.
20. Fu Y. X., and Li W. H. (1993) Statistical tests of neutrality of mutations. Genetics. 133: 693-709.
21. Ganter P. F., Starmer W. T., Lachance M.A., and Phaff H. J. (1986) Yeast communities from host plants and associated Drosophila in southern Arizona: new isolations and analysis of the relative importance of hosts and vectors on community composition. Oecologia. 70: 386–392.
22. Gerber A.S., and Templeton A.R. (1996) Population sizes and within-deme movement of Trimerotropis saxatilis (Acrididae), a grasshopper with a fragmented distribution. Oecologia. 105: 343-350.
23. Ghoneum M., and Gollapudi S. (2004) Induction of apoptosis in breast cancer cells by Saccharomyces cerevisiae, the baker's yeast, in vitro. Anticancer Research. 24: 1455-63.
24. Goddard M. R., Anfang N, Tang R, Gardner R.C., and Jun C. (2009) A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environmental Microbiology. 12: 63-73.
25. Goffeau A et al. (1996) Life with 6000 genes. Science. 274: 546, 563–7.
26. Golubev W. I., and Shabalin Y. (1994) Microcin production by the yeast Cryptococcus humicola. Microbiology. 119: 105–110.
27. Goto K., Fukuda H., Kichise K., Kitano K., and Hara S. (1991) Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. Biological Chemistry. 55: 1953–1958.
28. Goto K., Iwase Y., Kichise K., Kitano K., Totuka A., Obata T., and Hara S. (1990) Isolation and properties of a chromosome-dependent KHR killer toxin in Saccharomyces cerevisiae. Biological Chemistry. 54: 505–509.
29. Goto K., Iwatuki Y., Kitano K., Obata T., and Hara S. (1990) Cloning and nucleotide sequence of the KHR killer gene of Saccharomyces cerevisiae. Biological Chemistry. 54: 979–984.
30. Greene R. V., Gordon S. H., Jackson M. A., Bennett G. A. (1992) Detection of fungal contamination in corn: potential of FTIR-PAS and -DRS. J. Agric. Food Chemistry. 40: 1144-1149.
31. Grant W. A. S., and Bowen B. W. (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Heredity. 89: 415-426.
32. Gunge N., and Kitada K. (1988) Replication and maintenance of the Kluyveromyces linear pGKL plasmids. Epidemiology. 4: 409–414.
33. Gunge N., Tamaru A., Ozawa F., and Sakaguchi K. (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. Bacteriology. 145: 382–390.
34. Hayman G. T., and Bolen P. L. (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Current Genetics. 19: 389–393.
35. Hartl D.L., and Clark A.G. (2007) Principles of population genetics 4th ed. U.S.A.: Sinauer.
36. Hishinuma F., Nakamura K., Hirai K., Nishizawa R., Gunge N., and Maeda T. (1984) Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast. Nucleic Acids Research.. 12: 7581–7597.
37. Hillis D. M., and Bull J. J. (1993) An empirical test of bootstrapping as a method assessing confidence in phylogenetic analysis. Systematic Biology. 41: 182-192.
38. Hudson R. R., Boos D. D., and Kaplan N. L. (1992) A statistical test for detecting population subdivision. Molecular Biology and Evolution, 9:138-151.
39. Hu R.Y., Lee C. F., and Chou H. C. (2012) Pseudozyma spp. and Barnettozyma spp.effectively kill cancer cells in vitro. Genomic Medicine, Biomarkers, and Health Sciences. 4: 61-64
40. Karamysheva Z. N., Ksenzenko V. N., Tichomirova L. P., Golubev W. I. (1991) Mycocin production in Cystofilobasidium bisporidii is associated with double-stranded RNAs. Abstr. 15th Int. Spec. Symp. On Yeasts(Riga), p. 61
41. Kasahara S., Inoue S. B., Mio T., Yamada T., Nakajima T., Ichishima E., Furuichi Y., and Yamada H. (1994) Involvement of cell wall b-glucan in the action of HM-1 killer toxin. FEBS Letters. 348: 27–32.
42. Kasahara S., Yamada H., Mio T., Shiratori Y., Miyamoto C., Yabe T., Nakajima T., Ichishima E., and Furuichi Y. (1994) Cloning of the Saccharomyces cerevisiae gene whose overexpression overcomes the effects of HM-1 killer toxin, which inhibits beta-glucan synthesis. Bacteriology. 176: 1488–1499.
43. Kawahata M., Fujii T., and Iefuji H. (2007) Intraspecies diversity of the industrial yeast strains Saccharomyces cerevisiae and Saccharomyces pastorianus based on analysis of the sequences of the internal transcribed spacer (ITS) regions and the D1/D2 region of 26S rDNA. Bioscience Biotechnology and Biochemsitry. 71: 1616-1620.
44. Kimura T., Kitamoto N., Matsuoka K., Nakamura K., Iimura Y. and Kito Y. (1993) Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Genetic. 137:265–270.
45. Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Molecular Evolution. 16: 111-120.
46. Tamura K., Kumar S., Jakobsen I. B., and Nei M. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739.
47. Koltin Y., and Kandel J. S. (1978) Killer phenomenon in Ustilago maydis: the organization of the viral genome. Genetics. 88: 267–276.
48. Koltin Y., and Day D. R. (1975) Specificity of Ustilago maydis killer proteins. Appl. Microbiology. 30: 694–696.
49. Koltin Y., and Day D. R. (1976) Inheritance of killer phenotypes and double-stranded RNA in Ustilago maydis. Proceedings of the National Academy of Sciences. 73: 594–598.
50. Kummerle M., Scherer S., and Seiler H. (1998) Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Environment Microbiology. 64: 2207-2214.
51. Kurtzman C. P. (2006). Yeast species recognition from gene sequence analysis and other molecular 110 methods. Mycoscience. 47: 65-71.
52. Kurtzman C. P. (1992) rRNA sequence comparisons for assessing phylogenetic relationships among yeasts. Systematic Bacteriology. 42: 1-6.
53. Kurtzman C. P. (1998a) Pichia E.C. Hansen emend. Kurtzman. The Yeasts: A Taxonomic Study, 4th edn (Kurtzman C.P. and Fell J.W., eds), pp. 273-352.
54. Kurtzman C. P. (1994) Molecular taxonomy of the yeasts. Yeast. 10: 1727-1740.
55. Kurtzman C. P., and Robnett C.J. (1998b) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek. 73: 331–371.
56. Kurtzman C. P., Robnett C. J., and Basehoar-Powers E. (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen.nov., Lindnera gen.nov. and Wickerhamomyces gen.nov. Yeast Research. 8: 939–954.
57. Kurtzman C. P. (1984) Synonymy of the yeast genera Hansenula and Pichia demonstrated through comparison of deoxyribonucleic acid relatedness. Antonie Leeuwenhoek J. Microbiology. 50:209–217.
58. Kurtzman C. P., and Robnett C. J. (1991) Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwanniomyces determined from partial ribosomal RNA sequences. Yeast. 7: 61-72.
59. Lee C. F., Yao C. H., Liu Y. R., Hsieh C.W., and Young S. S. (2008b) Lachancea dasiensis sp. nov.,an ascosporogenous yeast isolated from soil and leaves in Taiwan. Systematic and Evolutionary Microbiology (in press).
60. Lee C. F., Yao C. H., Liu Y. R., Young S. S., and Chang K. S. (2008a) Kazachstania wufongensis sp. nov., an ascosporogenous yeast isolated from soil in Taiwan. General and Molecular Microbiology. (submitted)
61. Liti G., and Carter D. M. (2009) Population genomics of domestic and wild yeasts. Published in final edited form as: 458: 337–341.
62. Ligon J. M., Bolen P. L., Hill D. S., Bothast R. J., and Kurtzman C. P.(1989) Physical and biological characterization of linear DNA plasmids of the yeast Pichia inositovora. Plasmid. 21: 185–194.
63. Makower M., and Bevan E. A. (1963) The physiological basis of the killer character in yeast. Congress Genetics. 1: 202–203.
64. Magliani W., Conti S., Gerloni M., Bertolotti D., and Polonelli L. (1997) Yeast Killer Systems. Clinical Microbiology Reviews. 10: 369–400
65. Mariey L., Signolle J. P., Amiel C., and Travert J. (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vibrational Spectrosc. 26: 151-159.
66. Martini A. (1993) Origin and domestication of the wine yeast Saccharomyces cerevisiae. Wine Research. 4: 165–176.
67. Minter D. W. (2009) Cyberlindnera, a replacement name for lindnera Kurtzman et al., nom. Mycotaxon 110: 473-476.
68. Mortimer R., and Polsinelli M. (1999) On the origins of wine yeast. Research in Microbiology. 150: 199–204.
69. Mortimer R. K., Johnston J. R. (1986) Genealogy of principal strains of the
yeast genetic stock center. Genetics 113: 35–43.
70. Naumann A., Navarro-Gonza´lez M., Peddireddi S., Ku¨es U., and Polle A. (2005) Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genetic Biology. 42: 829-835.
71. Naumova E. S., Serpova E.V., and Naumov G. I. (2007) Molecular Systematics of Lachancea Yeasts. Biochemistry. 72: 1356-1362.
72. Naumov G. I., Kondratieva V. I., Naumova E. S. (2009) Taxonomic genetics of zygowilliopsis yeasts. Russion Journal of Genetics. 45: 1422-1427.
73. Naumova E. S., Naumov G. I., Nosek J. and Tomáska L. (2004) Differentiation of the Yeasts Williopsis, Zygowilliopsis and Komagataea by Karyotypic and PCR Analyses. Systematic Applied Microbiology. 27: 192–197.
74. Naumova E. S., Gazdiev D. O., Naumov G. I. (2006) Heterogeneity of the yeasts Zygowilliopsis californica: Z. californica var. dimennae comb. nov., stat. nov. and Z. californica var. fukushimae comb. nov., stat. nov. Mikrobiologiia.75: 358-63
75. Nei M., and Tajima F. (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction site data. Genetics. 105: 207-217.
76. Paffetti D., Barberio C., Casalone E., Cavalieri D., Fani R., Fia G., Mori E., and Polsinelli M. (1995) DNA fingerprinting by random amplified polymorphic DNA and restriction fragment length polymorphism is useful for yeast typing. Research of Microbiology. 146: 587-594.
77. Pasteur L. (1866) E’ tudes sur le vin.Paris (France): Imprimeurs Imperials. 266 p.
78. Platania C., Restuccia C., Muccilli S., Cirvilleri G. (2012) Food Microbiology. 30: 219-25.
79. Polonelli L., Conti S., Campani L., Gerloni M., Morace G., and Chezzi C. (1991) Differential toxinogenesis in the genus Pichia detected by an anti-VOL. 10, 1997 YEAST KILLER SYSTEMS 397 yeast killer toxin monoclonal antibody. Antonie Leeuwenhoek 59: 139–145.
80. Polonelli L., and Morace G. (1986) Reevaluation of the yeast killer phenomenon. Microbiology. 24: 866–869.
81. Rozas J., and Rozas R. (2009). DnaSP, Version5: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics.15: 174-175.
82. Ruderfer D. M., Pratt S. C., Seidel H. S., and Kruglyak L. (2006) Population genomic analysis of outcrossing and recombination in yeast. Nature Genetics. 38: 1077–81.
83. Saitou N., and Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Biology Evolution. 4: 406-425.
84. Sampaio J. P., and Goncalves P. (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Applied and Environmental Microbiology. 74: 2144–52.
85. Slatkin M. (1985) Gene flow in natural population. Ecology and Systematics. 16: 393-430.
86. Sniegowski P. D., Dombrowski P. G., and Fingerman E. (2002) Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. Yeast Research. 1: 299–306.
87. Stark M. J. R. (1988) Resolution of sequence discrepancies in the ORF1 region of the Kluyveromyces lactis plasmid k1. Nucleic Acids Research. 16: 771.
88. Stark M. J. R., Boyd A., Mileham A. J., and Romanos M. A. (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast. 6: 1–29.
89. Schru¨nder J., and Meinhardt F. V. (1995) Extrachromosomal inheritance: yeast linear killer plasmids as a tool in genetic engineering. Prog. Bot. 56: 332–353.
90. Schmitt J., and Flemming H.C. (1998) FTIR-spectroscopy in microbial and material analysis. Int. Biodeterior. Biodegradation 41: l-11.
91. Schuller D., Cardoso F., Sousa S., Gomes P., Gomes A. C., et al. (2012) Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions. PLoS ONE 7: e32507.
92. Stark M. J. R., Mileham A. J., Romanos M. A., and Boyd A. (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Research. 12: 6011–6030.
93. Starmer W. T., Ganter P. F., and Aberdeen V. (1992) Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States. Microbiology. 58: 990–997.
94. Starmer W. T., Ganter P.F., Aberdeen V., Lachance M. A., and Phaff H. J. (1987)The ecological role of killer yeasts in natural communities of yeasts. Can. J. Microbiology. 33: 783-796
95. Sturley S. L., El-Sherbeini M., Kho S. H., Le Vitre J., and Bostian K. A.(1988) Acquisition and expression of the killer character in yeast, p. 179–208. In Y. Koltin and M. J. Leibowitz (ed.), Viruses of fungi and simple eukaryotes–1988. Marcel Dekker, Inc., New York, N.Y.
96. Tajima F. (1989) Statistical method for testing the neutral mutationhypothesis by DNA polymorphism. Genetics. 123: 585-595.
97. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 25: 4876-4882.
98. Tipper D. J., and Bostian K. A. (1984) Double-stranded ribonucleic acid killer systems in yeasts. Microbiol. Rev. 48:125–156.
99. Toubas D., Essendoubi M., Adt I., Pinon J. M., Manfait M., and Sockalingum G. D. (2007) FT-IR spectroscopy in medical mycology: applications to the differentiation and typing of Candida. Chemistry. 387:1729-1737.
100. Tsai I. J., Bensasson D., Burt A., and Koufopanou V. (2008) Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proc Natl Acad Sci U S A. 105: 4957–62.
101. Vustin M. M., Kalina E. N., Bab’eva I. P., Reshetova I. S., and Sineokii S. P. (1993) Killer toxins from Debaryomyces yeasts. Mikrobiologiya 62: 151–155.
102. Walker G. M., McLeod A. H., and Hodgson V. J. (1995) Interactions between killer yeasts and pathogenic fungi. Microbiology. 127: 213–222.
103. Wenning M., Seiler H., and Scherer S. (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Microbiology. 68: 4717-4721.
104. White T. J., Bruns T., Lee S. and Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics, PCR protocols: a guide for methods and applications, (Innis MA, Gelfand DH, Sninsky JJ and White TJ eds), pp. 315-322.
105. Wickerham L. J. (1952) Recent advances in the taxonomy of yeasts. Microbiology. 6: 317-32.
106. Wickerham L. J. (1969) Yeast taxonomy in relation to ecology, genetics, and phylogeny. Antonie Van Leeuwenhoek. 35: 31-58.
107. Wickner R. B. (1985) Killer yeasts. Medical Mycology. 1: 286–312.
108. Wickner R. B. (1986) Double-stranded RNA replication in yeast: the killer system. Biochemistry. 55: 373–395.
109. Wickner R. B. (1996) Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiology. 60: 250–265.
110. Worsham P. L. and Bolen P. L. (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Current Genetics. 18: 77–80.
111. Wright S. (1969) Evolution and the Genetics of Populations, Vol. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago, IL.
112. Yamamoto T., Imai M., Tachibana K. and Mayumi M. (1986) Application of monoclonal antibodies to the isolation and characterization of a killer toxin secreted by Hansenula mrakii. FEBS Letties. 195: 253–257.
113. Yamamoto T., Iratani T., Hirata H., Imai M., and Yamaguchi H. (1986) Killer toxin from Hansenula mrakii selectively inhibits cell wall synthesis in a sensitive yeast. FEBS Letties. 197: 50–54.
114. Yamamoto T., Kamegai S., Iratani T., Uchida K., and Yamaguchi H.(1987)Yeast strains possessing killer activity against Candida albicans. Mycological. 28: 338–340.
115. Yokomori Y., Akyiama H. and Shimizu K. (1988) Isolation of a wild Candida killer yeast with a novel killer property. Chemistry. 52: 2791–2796.
116. Young T. W., and Yagiu M. (1978) A comparison of the killer character in different yeasts and its classification. Antonie Leeuwenhoek. 44: 59–77.
117. Zorg J., Kilian S. and Radler F. (1988) Killer toxin producing strains of the yeasts Hanseniaspora uvarum and Pichia kluyveri. Microbiology. 149: 261-267.