研究生: |
魏力宇 Wei, Li-Yu. |
---|---|
論文名稱: |
以螢光生命期影像顯微技術研究不同奈米結構 對於金屬螢光增強效應的影響 Investigating the metal enhanced fluorescence by various nanostructures of gold particles using fluorescence lifetime image microscope |
指導教授: |
陳益佳
Chen, I-Chia |
口試委員: |
朱立岡
Chu, Li-Kang 陳貴通 Tan, Kui-Thong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 螢光 、金奈米粒子 、結構 、動力學模型 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究探討了不同結構對於金屬增強螢光效應之影響。為了要能穩定控制
螢光染料分子與金奈米粒子的間距,我們以抗生物素蛋白(Avidin)作為間隙物,
並在染料分子與金奈米粒子表面上修飾生物素(biotin),使抗生物素蛋白能鍵結於
金奈米粒子表面與染料分子,達成控制間距離的目的。再利用螢光生命期影像顯
微技術分析單顆奈米粒子對於螢光染料生命期與螢光放光強度的影響及建立合
理之分子動力學模型。所使用的金奈米粒子為60 nm 球形、170 nm 具有四偶極
矩共振吸收峰的球形、具有避雷針電場集中效應之70 nm 立方形與63 nm 菱形
十二面體形,其收取到之螢光生命期均呈現三自然指數衰竭,在不同結構中第一
部分生命其均呈現低於時間解析30 ps 之螢光生命期,第二部分生命期中170 nm
球形約為0.2 ns、70 nm 方形為0.25 ns、63 nm 菱形十二面體為0.28 ns 與60 nm球形金奈米粒子為0.33 ns,在第三部分生命期中170 nm 與60 nm 球形奈米粒子呈現1.8 ns,63 nm 菱形十二面體與70 nm 方形金奈米粒子呈現1.2 ns。將第一部分指認為染料分子受到金奈米粒子局部電場影響下的放光生命期,第二個部分
螢光生命期為200-350 ps 並將其指認為激發態染料分子將能量傳遞給金奈米粒
子明亮模式後,再回傳給染料分子放光之螢光生命期,第三部分螢光生命期為在
金奈米粒子電場影響下背景螢光生命期。最後,以實驗測得之結果及參考先前研
究之文獻,我們推出簡易的動力學模型並釋解出動力學模型中的各個速率常數與
螢光放光增益效率。由螢光放光增益效率的計算發現增益強度依序為70 nm 方形
奈米粒子、63 nm 菱形十二面體金奈米粒子、170 nm 球形金奈米粒子與60 nm 球
形金奈米粒子,因此螢光增強與結構尖端強度相關。
We study the effects of metal-enhanced fluorescence on Rhodamine B dye
molecule by nanoparticles with varied structures. Avidin was used as a spacer to
connect Rhodamine B and the surface of nanoparticles. Fluorescence lifetime image
microscopy (FLIM) combined with time correlated single photon counting (TCSPC)
was used to detect the emission image and lifetime of dye on single nanoparticle.
Spherical gold particles dia. 60 nm and 170 nm, gold cube length 70 nm and 63 nm
rhombi dodecahedral (RB) were synthesized and used in this study. For all emission
curves we observe triexponential decay with the first lifetime less than 30 ps limited by
our instrument. The second lifetime is 0.2, 0.25, 0.28 and 0.33 ns for 170 nm sphere,
70 nm cube, 63 nm RB, and 60 nm sphere, respectively. The third lifetime (amplitude
2%) for spheres ∼1.8 ns is similar to that of free Rhodamine B but for RB and cube is
shortened to 1.2 ns. We assign the first temporal component to the decay of dye under influence of the local electric field of gold nanoparticle. The second temporal component is referred to the excited dye molecule transferring energy to the bright mode of nanoparticle then transferring back to the dye molecule. The long component can be due to dye attaching on varied gold surface resulting some trace emission signal.Based on the data and previous work we derive a kinetic model to explain our observation. Our data reveal that the 70 nm cube has the best enhancement influorescence, followed by 63 nm RB. This is because of the greatest electric field produced in the corners of nanostructures during photoexcitation.
Simultaneous Excitation and Emission Enhancement of Fluorescence
Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117,
10636-10642.
2. Green, N. M., Avidin. 3. The nature of the biotin-binding site. Biochem. J. 1963,
89, 599-609.
3. Ray, K.; Badugu, R.; Lakowicz, J. R., Polyelectrolyte Layer-by-Layer Assembly to
Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem.
Mat. 2007, 19, 5902-5909.
4. Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and Quenching of Single-
Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002.
5. Zhang, Y.; Dragan, A.; Geddes, C. D., Wavelength Dependence of Metal-Enhanced
Fluorescence. J. Phys. Chem. C 2009, 113, 12095-12100.
6. Xie, F.; Baker, M. S.; Goldys, E. M., Enhanced Fluorescence Detection on
Homogeneous Gold Colloid Self-Assembled Monolayer Substrates. Chem. Mat. 2008,
20 , 1788-1797.
7. Aslan, K.; Malyn, S. N.; Geddes, C. D., Metal-Enhanced Fluorescence from Gold
Surfaces: Angular Dependent Emission. J. Fluoresc. 2007, 17 , 7-13.
8. Geddes, C. D.; Lakowicz, J. R., Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12 ,
121-129.
9. Chowdhury, M. H.; Aslan, K.; Malyn, S. N.; Lakowicz, J. R.; Geddes, C. D., Metal-
Enhanced Chemiluminescence: Radiating Plasmons Generated from Chemically
Induced Electronic Excited States. Appl. Phys. Lett. 2006, 88.
10. Lin, H.-H.; Chen, I. C., Study of the Interaction between Gold Nanoparticles and
Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence
Spectroscopy. J. Phys. Chem. C 2015, 119, 26663-26671.
11. Fu, B.; Flynn, J. D.; Isaacoff, B. P.; Rowland, D. J.; Biteen, J. S., Super-Resolving the
Distance-Dependent Plasmon-Enhanced Fluorescence of Single Dye and Fluorescent
Protein Molecules. J. Phys. Chem. C 2015, 119, 19350-19358.
12. Hu, M.; Hartland, G. V., Heat Dissipation for Au Particles in Aqueous Solution:
Relaxation Time versus Size. J. Phys. Chem. B 2002, 106, 7029-7033.
13. (a) Wang, J. T.; Moore, J.; Laulhe, S.; Nantz, M.; Achilefu, S.; Kang, K. A.,
Fluorophore-Gold Nanoparticle Complex for Sensitive Optical Biosensing and Imaging.
Nanot 2012, 23, 095501; (b) Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C.
J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to
Silica-Coated Gold Nanorods. Acs Nano 2014, 8, 8392-8406.
91
14. (a) Bharadwaj, P.; Novotny, L., Spectral Dependence of Single Molecule
Fluorescence Enhancement. Opt. Express 2007, 15 , 14266-14274; (b) Guzatov, D. V.;
Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Y.; Glukhov, Y. F.; Gaponenko, S. V.,
Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory,
Modeling, and Experiment. J. Phys. Chem. C 2012, 116, 10723-10733; (c) Khatua, S.;
Paulo, P. M. R.; Yuan, H.; Gupta, A.; Zijlstra, P.; Orrit, M., Resonant Plasmonic
Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods. ACS Nano
2014, 8, 4440-4449.
15. Bastus, N. G.; Comenge, J.; Puntes, V., Kinetically controlled seeded growth
synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus
Ostwald ripening. Langmuir 2011, 27 , 11098-105.
16. Wu, H. L.; Kuo, C. H.; Huang, M. H., Seed-mediated synthesis of gold nanocrystals
with systematic shape evolution from cubic to trisoctahedral and rhombic
dodecahedral structures. Langmuir 2010, 26, 12307-13.
17. Link, S.; El-Sayed, M. A., Optical properties and ultrafast dynamics of metallic
nanocrystals. Annu Rev Phys Chem 2003, 54, 331-66.
18. Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.; Chen, I. C.; Chu, L.-K.,
Distance-Dependent Excited-State Electron Transfer from Tryptophan to Gold
Nanoparticles through Polyproline Helices. J. Phys. Chem. C 2017, 121, 4882-4890.
19. 林幸慧博士論文