簡易檢索 / 詳目顯示

研究生: 吳家帆
論文名稱: 互動性虛擬實境之開發與應用-以生產作業為例
指導教授: 王茂駿
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 數位人體模型即時控制虛擬組裝2D生物力學即時人因評估
外文關鍵詞: digital human model, real-time control, virtual assembly, 2D biomechanical model, real-time ergonomic evaluations
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位人體模型的應用範圍越來越廣泛,其範圍遍佈各個領域,而在數位人體模型的動作模擬可利用動作擷取系統捕捉現場真實動作,或是透過現場作業的錄影再以人工手拉動畫來呈現。但若需分析評估新的生產線或工作現場,在沒有任何實體模型的條件下欲模擬出未知的作業動作則不可行,因此本研究希望發展一套能模擬真實作業環境,讓使用者直接進行虛擬組裝與即時評估分析的虛擬實境系統。

    本研究透過HMD、空間定位儀、5DT資料手套等輸入設備以實現即時控制數位人體模型,並利用5DT資料手套與互動機制的建立來達成與虛擬物件互動,藉此方式可讓使用者完全融入虛擬環境中,並任意抓取任一虛擬物件,以利進行虛擬組裝作業。最後再加入2D生物力學評估模式,讓使用者在動作模擬的同時,便可即時的產生評估結果,以達到即時評估和改善之目的。

    結合即時控制數位人體模型、虛擬互動機制、即時生物力學評估三大功能,本研究將真實車門生產線的物件匯入,以模擬車門線的作業環境。在虛擬組裝應用中,透過虛擬試裝可以檢視組裝流程,物料配置;在真實作業評估應用中,透過即時評估檢視作業姿勢,以對真實作業時的危險姿勢進行改善;最後在搬運物料的即時虛擬作業評估應用中,透過即時虛擬作業與即時評估,可對新生產線或工作站進行評估與改善。使用本系統即時模擬所產生的改善結果不僅可縮短設計時程,降低成本,對於新生產線與工作站的改善也更有效率更有依據。


    Nowadays, the application of digital human models becomes broader and more promising. By using the motion capture system or manipulating the digital human models manually, it can easily simulate human tasks in the virtual world. Thus, this study aims to develop a VR system to allow users simulating assembly tasks and conducting real-time evaluation.

    In this study, we used the HMD, 3D position devices, and 5DT data gloves to manipulate the digital human model. In addition, the 5DT data gloves can make users interact with virtual objects with their hands to simulate assembly tasks. Finally, with the support of 2D biomechanical models, we can conduct real-time biomechanics evaluations in design improvement.

    By integrating the DHM with interaction mechanism and 2D biomechanical models, we can simulate the vehicle door assembly tasks. In the virtual assembly, the process flow and layout can be visualized. In the evaluation of real task, hazardous postures can be determined and then be improved. Finally, with both virtual tasks and real-time evaluations, we can evaluate a new workstation in a production line. The system can reduce the time and cost for the design of a new workstation. Besides, the improvements can be realized in an efficient and cost-effective manner.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 1 1-3 研究目的 2 1-4 論文架構 3 第二章 文獻探討 4 2-1 虛擬實境 4 2-1-1 虛擬實境的定義與發展 4 2-1-2 虛擬實境的相關設備 5 2-1-3 虛擬實境的分類 7 2-1-4 虛擬實境的應用 8 2-2 數位人體模型與人體運動學 11 2-2-1 數位人體模型 11 2-2-2 數位人體模型驅動方式 13 2-2-3 人體生物力學與關節活動角度 14 2-3 虛擬實境互動技術 19 2-3-1 碰撞偵測 19 2-3-2 虛擬物件選取 20 2-3-3 控制、操作物件方式 21 2-4 2D生物力學模式 22 第三章 研究設備與儀器校正 23 3-1 研究設備 23 3-1-1 桌上型電腦 23 3-1-2 空間定位儀 23 3-1-3 5DT資料手套 24 3-1-4 頭戴式顯示器 25 3-1-5 Virtools dev3.0 26 3-2 空間定位儀之校正 27 第四章 研究方法 34 4-1 研究流程 34 4-2 數位人體模型動作屬性建立與即時驅動 35 4-2-1 身體、四肢動作屬性建立與即時驅動 35 4-2-2 姿勢合理化 36 4-2-3 IK機制的修正 38 4-2-4 手指動作屬性與即時驅動 39 4-2-5 頭部動作屬性建立與即時驅動 42 4-2-6 數位人體模型視覺建立 43 4-2-7 系統配置與全身驅動 44 4-3 建立虛擬互動機制 45 4-4 構建2D生物力學模式 47 4-4-1 力學模式輸入參數 47 4-4-2 力學模式評估輸出 49 4-5 虛擬場景構建 50 4-6 VR系統之驗證 51 4-6-1 空間與時間驗證 51 4-6-2 動作驗證 53 4-6-3 生物力學模式驗證 54 第五章 研究成果與討論 59 5-1 系統功能 59 5-2 即時虛擬作業實例 60 5-3 即時作業評估實例 62 5-4 即時虛擬作業評估改善實例 63 5-5 討論 66 第六章 結論與建議 68 6-1 結論 68 6-2 建議 69 參考文獻 70

    參考文獻
    1. 勞工安全衛生研究所台灣人體計測資料庫:http://www.iosh.gov.tw/frame.htm
    2. 陳志豪,2005。作業導向之數位人體動作產生。國立清華大學工業工程研究所碩士論文。
    3. 鄧逸仁,2002。以資料手套控制虛擬人偶之動作。國立中興大學機械工程研究所碩士論文。
    4. 劉哲綱,2003。3D人體模型之動態評估。國立清華大學工業工程研究所碩士論文。
    5. 應宜雄、盧士一、陳志勇、李正隆,1999。生物力學法人工抬舉姿勢評估圖之製作。行政院勞工委員會勞工安全衛生研究,勞工安全衛生研究季刊,7(4),443-458。
    6. Aston, B., 2003. Virtual environment for training. Multimedia Systems Conference 2003, Avenue Campus University of Southampton.
    7. Badler, N. I., Costa, M., Zhao, L., Chi, D., 2000. To gesture or not to gesture: what is the question? In Proc. Computer Graphics International, pp. 3–9.
    8. Badler, N. I. and Philips, B., 1993. Simulating humans: Computer graphics animation and control. Oxford University Press, New York.
    9. Berta, J., 1999. Integrating VR and CAD. IEEE Computer Graphics and Applications, Vol.19, pp. 14–19.

    10. Bimber, O., 1999. Gesture controlled object interaction: A virtual table case study. Computer graphics, Visualization, and Interactive Digital Media, Vol. 1. Plzen, Czech Republic.
    11. Chaffin, D. B., 1969. A computerized biomechanical model: Development and use in studying gross body action. Journal of biomechanical, Vol.2, pp. 429-441.
    12. Chaffin, D. B., Andersson, B.J., and Martin, B.J., 1999. Occupational Biomechanics-Third edition. John Wiley & Sons, Inc.
    13. Chaffin, D. B., 2001. Digital Human Modeling for Vehicle and Workplace Design. Society of Automotive Engineers, Warrendale PA.
    14. Chaffin, D. B., 2002. On simulating human reach motion for ergonomics analyses. Human Factors and Ergonomics in Manufacturing, Vol.12, pp. 1-13.
    15. Chang, S. W. and Wang, M.-J. J., 2004. Digital workplace evaluation:Using automobile assembly as an example. HAAMAHA’04 9th International Conference, Vol.2, pp. 614-619.
    16. Dempster, W. T., 1955. Space requirements of the seated operator, WADC-TR-55-159, Aerospace Medical Research Laboratories, Dayton, Ohio.
    17. De Sá, A. G. and Zachmann, G., 1998. Integrating virtual reality for virtual prototyping. In Proc. of the 1998 ASME Design Engineering Technical Conferences. Atlanta, Georgia, September, pp. 13-16.
    18. Dorfmueller-Ulhaas, K. and Schmalstieg, D., 2001. Finger tracking for interaction in augmented environments. Proceedings ISAR'01, New York, Oct, pp. 55-64.

    19. Gleicher, M., 2001. Motion Path Editing. Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics, pp. 192-202.
    20. Haar, R., 2005. Virtual reality in the military: Present and future. 3rd Twente Student Conference on IT , Enschede June.
    21. Hancock, D., 1993. Prototyping the Hubble fix. IEEE Spectrum, Vol.30, pp. 34-39.
    22. Ingalls, R. G.., Rossetti, M. D., Smith, J. S., Peters, B. A., 2004. Participatory ergonomics using VR integrated with analysis tools. Proceedings of the 2004 Winter Simulation Conference.
    23. Kao, D. L. and Bryson, S., 2003. A voice and mouse input interface for 3D virtual environments. ICAT 2003 December 3-5, Tokyo, JAPAN.
    24. Kühnapfel, U., Çakmak, H. K., Maass, H., 1999. 3D Modeling for endoscopic Surgery. In: Proc. IEEE Symposium on Simulation, Delft , NL, Oct. Vol.13, pp. 22-32.
    25. Kuo, C. F. and Wang, M.-J. J., 2004. Interactive virtual evaluation for interface design.HAAMAHA’04 9th International Conference, Vol.2, pp. 606-613.
    26. Lin, C., Loftin, R., Stark, T., 1998. Virtual reality for geosciences visualization. Proceedings of Computer Human Interaction. 3rd Asia Pacific, pp. 196-201.
    27. Lombardo, J. S., Mihalak, E., Osborne, S. R., 1996. Collaborative virtual prototyping. Johns Hopkins APL Technical Digest, Vol.17, pp.295-304.

    28. Macpherson, C. and Keppell, M., 1997. Is the Elephant really there? – Virtual reality in education. Paper delivered at DDCE seminar, 3 October, Central Queensland University.
    29. McDonald, J., Toro, J., Alkoby, K., Berthiaume, A., 2001. An improved articulated model of the human hand. The Visual Computer, Vol.17, pp. 158–166.
    30. Mine, M. R., 1995. Virtual environment interaction techniques. UNC Chapel Hill Computer Science Technical Report TR95-018.
    31. Mine, M. R. and Sequin, C. H., 1997. Moving objects in space: Exploiting proprioception in virtual-environment interaction. In SIGGRAPH 97 Conference, pp. 19–26.
    32. Moore, M. and Wilhelms, J., 1988. Collision detection and response for computer animation. Computer Graphics, Vol.22, pp. 289-298.
    33. Nordin, M. and Frenkel, V. H., 1989. Basic Biomechanics of the Musculoskeletal System. (2nd ed.). Lea & Febiger, Philadelphia, PA.
    34. Sanders, M. S. and McMormick, E. J., 1993. Human Factors in Engineering and Design. (7th ed.). McGraw Hill, New York.
    35. Semwal, S. K., Hightower, R., Stansfield, S., 1998. Mapping algorithms for real-time control of an avatar using eight sensors. Presence, Teleoperators, and Virtual Environments, Vol.7, pp. 1-21.
    36. Slater, M. and Usoh, M., 1994. Body centred interaction in immersive virtual environments. Artificial Life and Virtual Reality, N. Magnenat Thalmann, D. Thalmann, eds., John Wiley, pp. 1-10.
    37. Stuart, R., 1996. The Design of Virtual Environments. McGraw-Hill, New York, N.Y.
    38. Sturman, D. J., Zeltzer, D., Pieper, S., 1989. Hands-on interaction with virtual environments. Proceedings of the 2nd annual ACM SIGGRAPH symposium on User interface software and technology, pp. 19-24.
    39. Sutherland, I. E., 1963. Sketchpad a man-machine graphical communication system. Proceedings Spring Joint Computer Conference.
    40. Sutherland, I. E., 1965. The ultimate display. Proceedings of IFIP Congress, pp. 506-508.
    41. Taniguchi, R. I., Yonemoto, S., Arita, D., Hoshino, R., 2002. Real-time human motion analysis for human-machine interface. Proceedings of Advanced Visual Interfaces.
    42. Tolani, D., Goswami, A., Badler, N. I., 2000. Real-Time inverse kinematics techniques for anthropomorphic limbs. Graphical Models Vol.62, pp. 353–388.
    43. Vince, J., 1995. Virtual Reality Systems. Addison-Wesley, London.
    44. Yu, W., Abdel-Malek, K., Jaber, M., 2001. Realistic posture prediction. SAE Digital Human Modeling and Simulation.
    45. Zachmann, G. and Rettig, A., 2001. Natural and robust interaction in virtual assembly simulation. Eighth ISPE International Conference on Concurrent Engineering: Research and Applications (ISPE/CE2001), July.

    46. Zhao, J. and Badler, N. I., 1994. Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Transactions on Graphics, Vol.13, pp. 313-336.
    47. Zordan, V. B.and Hodgins, J. K., 2002. Motion capture-driven simulations that hit and react. ACM SIGGRAPH Symposium on Computer Animation, pp. 89-96.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE