研究生: |
林泓佑 Lin, Hung-Yu |
---|---|
論文名稱: |
真空蒸鍍銫基鈣鈦礦太陽能電池主動層之研究 Study of vacuum deposited Cs-based perovskite solar cell active layers |
指導教授: |
林皓武
Lin, Hao-Wu |
口試委員: |
陳志平
朱治偉 呂明諺 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、銫基鈣鈦礦 |
外文關鍵詞: | perovskite solar cell, Cs-based perovskite |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究應用於真空蒸鍍銫基鈣鈦礦主動層之元素組成與製備方式對元件表現的影響。
第一章,簡介太陽能電池的發展歷史,並回顧染料敏化太陽能電池、有機太陽能電池與鈣鈦礦太陽能電池的發展過程與現況。
第二章,概述鈣鈦礦太陽能電池之工作原理、光電特性、元件結構、特性分析、元件製備與量測。
第三章,我們以真空共蒸鍍製程作來製備鈣鈦礦主動層,透過調變銫基鉛鈣鈦礦的元素組成,觀察其對於元件表現之影響。CsPbI2Br參雜少量CsCl時,最佳元件表現為短路電流密度14.6 mA/cm2,開路電壓1.13 V,填充因子0.75,元件光電轉換效率12.2%。CsPbI2Br參雜少量ZnI2時,最佳元件表現為短路電流密度15.1 mA /cm2,開路電壓1.14 V,填充因子0.71,元件光電轉換效率12.2%。參雜CsCl與ZnI2均對CsPbI2Br元件表現無顯著提升。以CsPbI2.5Br0.5作為主動層時,最佳元件表現為短路電流密度16.2 mA/cm2,開路電壓1.15 V,填充因子0.61,元件光電轉換效率11.3%。以CsPbBr3作為主動層時,在反結構元件中有最佳表現,其短路電流密度為5.96 mA/cm2,開路電壓為1.01 V,填充因子為0.55,元件光電轉換效率為3.3%。
第四章,我們選用CsBr與SnI2為前驅物,藉由真空共蒸鍍製程製備CsSnI2Br,搭配4,4′-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) 與 4,4′,4′′-Tris[2-naphthyl(phenyl)amino] triphenylamine (2T-NATA) 作為電洞傳輸材料,探討其對於元件表現之影響。其中,以2T-NATA作為電洞傳輸層時元件有最佳表現,短路電流密度為8.32 mA/cm2,開路電壓為0.4 V,填充因子為0.4,元件光電轉換效率為1.36%。
第五章,我們以交替型真空蒸鍍製程製備CsPbI2Br,探討相同厚度下,不同層數之CsBr與PbI2薄膜特性與其對於元件表現的影響。其中以類磊晶之660-pair CsPbI2Br有最佳元件表現,在優化C60電子傳輸層厚度後,最佳元件之短路電流密度為15.6 mA/cm2,開路電壓為1.13 V,填充因子為0.74,能量轉換效率達13%。該元件在有封裝且存放於氮氣環境的狀態下,經90天後仍保有原先96%之效率,具有優異的元件穩定度。我們也以螢光燈做為量測光源,量測不同室內光強度下的元件表現,元件於1000 lux時擁有達33.9%的轉換效率。
In this thesis, we studied the vacuum deposited Cs-based perovskite active layers for solar cell applications.
In the first part of this thesis, we briefly reviewed the development of photovoltaics, dye-sensitized solar cells, organic solar cells and perovskite solar cells.
In the second part of thesis, we explicated the operation principle and characteristics of perovskite solar cells, followed by details of device structures, materials analyses, device fabrication and characteristics measurements.
In the third part of thesis, we prepared cesium-based lead perovskites by vacuum co-evaporation process with different element compositions. The device doped with CsCl in CsPbI2Br active layer exhibited highest power conversion efficiency (PCE) of 12.2%, with a short-circuit current density (Jsc) of 14.6 mA/cm2, an open-circuit voltage (VOC) of 1.13 V, and a fill factor (F.F.) of 0.75. And the device doped with ZnI2 in CsPbI2Br active layer exhibited highest PCE of 12.2%, with a Jsc of 15.1 mA/cm2, a VOC of 1.14 V, and a F.F. of 0.71. There were no obvious improvements by doping CsCl and ZnI2 in the CsPbI2Br thin film. The highest device PCE of CsPbI2.5Br0.5 was 11.3%, with a Jsc of 16.2 mA/cm2, a VOC of 1.15 V, and a F.F. of 0.61. When CsPbBr3 was used as an active layer, the n-i-p inverted structure device exhibited highest PCE of 3.3%, with a Jsc of 5.96 mA/cm2, a VOC of 1.01 V, and a F.F. of 0.55.
In the fourth part of thesis, we selected CsBr and SnI2 as precursors and fabricated CsSnI2Br thin film by vacuum co-evaporation deposition. By optimizing the hole transporting materials, the device using 2T-NATA as a hole transporting layer delivered the highest PCE of 1.36%, with a Jsc of 8.32 mA/cm2, a VOC of 0.4 V, and a F.F. of 0.4.
In the fifth part of thesis, we used alternative deposition method to fabricate CsPbI2Br thin film and evaluated the effect of CsBr and PbI2 pair number on the device performance. The 660-pair CsPbI2Br solar cell with a 15-nm C60 electron transporting layer showed the highest PCE of 13.0%, with an VOC, JSC, and F.F. of 1.13 V, 15.6 mA.cm−2, and 0.74, respectively. The encapsulated device maintained 96% of its efficiency after 90 days. Furthermore, the use of these devices for environmental light energy harvesting was validated by a PCE of 33.9% under 1000 lux fluorescent light illumination.
[1] A. E. Becquerel, C.R.Acad.Sci. 1839, 9, 561.
[2] W. Smith, Nature 1873, 7, 303.
[3] C. E. Fritts, Proc. Am. Assoc. Adv. Sci. 1883, 33, 97.
[4] N. R. E. Laboratory, https://www.nrel.gov/pv/cell-efficiency.html.
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
[6] A. Slade, V. Garboushian, in 15th International Photovoltaic Science and Engineering Conference, 2005.
[7] W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
[8] Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Nat. Commun. 2019, 10, 2515.
[9] X. Zhang, Q. Chen, H. Sun, T. Pan, G. Hu, R. Ma, J. Dou, D. Li, X. Pan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 118, 564.
[10] S. Namba, Y. Hishiki, The Journal of Physical Chemistry 1965, 69, 774.
[11] G. M. Hasselman, D. F. Watson, J. R. Stromberg, D. F. Bocian, D. Holten, J. S. Lindsey, G. J. Meyer, J. Phys. Chem. B 2006, 110, 25430.
[12] M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos, M. Grätzel, Helv. Chim. Acta 1990, 73, 1788.
[13] B. O'Regan, M. Grätzel, Nature 1991, 353, 737.
[14] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc. 1993, 115, 6382.
[15] M. K. Nazeeruddin, P. Péchy, M. Grätzel, Chem. Commun. 1997, 1705.
[16] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem. 1999, 38, 6298.
[17] S. Ardo, G. J. Meyer, Chem. Soc. Rev. 2009, 38, 115.
[18] P. Chen, J. H. Yum, F. D. Angelis, E. Mosconi, S. Fantacci, S.-J. Moon, R. H. Baker, J. Ko, M. K. Nazeeruddin, M. Grätzel, Nano Lett. 2009, 9, 2487.
[19] S. Glenis, G. Tourillon, F. Garnier, Thin Solid Films 1986, 139, 221.
[20] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
[21] P. Peumans, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126.
[22] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
[23] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 17, 66.
[24] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photon. 2014, 8, 506.
[25] V. M. Goldschmidt, Naturwissenschaften 1926, 14, 477.
[26] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
[27] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
[28] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
[29] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2012, 134, 17396.
[30] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
[31] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
[32] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
[33] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 2014, 53, 3151.
[34] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
[35] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, L. Spiccia, Angew. Chem. 2014, 126, 10056.
[36] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
[37] S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.
[38] M. Hirasawa, T. Ishihara, T. Goto, J. Phys. Soc. Jpn. 1994, 63, 3870.
[39] I. B. Koutselas, L. Ducasse, G. C. Papavassiliou, J. Phys.: Condens. Matter 1996, 8, 1217.
[40] J. S. Manser, J. A. Christians, P. V. Kamat, Chem. Rev. 2016, 116, 12956.
[41] V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Nat. Commun. 2014, 5, 3586.
[42] T. Ishihara, J. Lumin. 1994, 60-61, 269.
[43] T. C. Sum, N. Mathews, Energy Environ. Sci. 2014, 7, 2518.
[44] J. Even, L. Pedesseau, C. Katan, J. Phys. Chem. C 2014, 118, 11566.
[45] W. Yang, Y. Yao, C.-Q. Wu, J. Appl. Phys. 2015, 117, 095502.
[46] H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chen, Y. Yang, J. Mater. Chem. A 2015, 3, 9108.
[47] X. Bao, Y. Wang, Q. Zhu, N. Wang, D. Zhu, J. Wang, A. Yang, R. Yang, J. Power Sources 2015, 297, 53.
[48] F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Nat. Commun. 2016, 7, 10379.
[49] B. Li, C. Fei, K. Zheng, X. Qu, T. Pullerits, G. Cao, J. Tian, J. Mater. Chem. A 2016, 4, 17018.
[50] K. L. Svane, A. C. Forse, C. P. Grey, G. Kieslich, A. K. Cheetham, A. Walsh, K. T. Butler, J. Phys. Chem. Lett. 2017, 8, 6154.
[51] T. Leijtens, E. T. Hoke, G. Grancini, D. J. Slotcavage, G. E. Eperon, J. M. Ball, M. De Bastiani, A. R. Bowring, N. Martino, K. Wojciechowski, M. D. McGehee, H. J. Snaith, A. Petrozza, Adv. Energy Mater. 2015, 5, 1500962.
[52] S. Bae, S. Kim, S.-W. Lee, K. J. Cho, S. Park, S. Lee, Y. Kang, H.-S. Lee, D. Kim, J. Phys. Chem. Lett. 2016, 7, 3091.
[53] Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao, Y. Li, S. F. Liu, ACS Energy Letters 2017, 2, 1479.
[54] M. C. Brennan, S. Draguta, P. V. Kamat, M. Kuno, ACS Energy Letters 2018, 3, 204.
[55] H. Huang, H. Yuan, K. P. F. Janssen, G. Solís-Fernández, Y. Wang, C. Y. X. Tan, D. Jonckheere, E. Debroye, J. Long, J. Hendrix, J. Hofkens, J. A. Steele, M. B. J. Roeffaers, ACS Energy Letters 2018, 3, 755.
[56] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Nat. Photon. 2013, 8, 128.
[57] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Adv. Mater. 2014, 26, 6647.
[58] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, H.-W. Lin, Adv. Mater. 2016, 28, 7013.
[59] H. Chen, S. Xiang, W. Li, H. Liu, L. Zhu, S. Yang, Solar RRL 2018, 2, 1700188.
[60] K. M. Sim, A. Swarnkar, A. Nag, D. S. Chung, Laser & Photonics Reviews 2018, 12, 1700209.
[61] Q. Ma, S. Huang, X. Wen, M. A. Green, A. W. Y. Ho-Baillie, Adv. Energy Mater. 2016, 6, 1502202.
[62] C.-Y. Chen, H.-Y. Lin, K.-M. Chiang, W.-L. Tsai, Y.-C. Huang, C.-S. Tsao, H.-W. Lin, Adv. Mater. 2017, 29, 1605290.
[63] Q. Ma, S. Huang, S. Chen, M. Zhang, C. F. J. Lau, M. N. Lockrey, H. K. Mulmudi, Y. Shan, J. Yao, J. Zheng, X. Deng, K. Catchpole, M. A. Green, A. W. Y. Ho-Baillie, J. Phys. Chem. C 2017, 121, 19642.
[64] J. Lei, F. Gao, H. Wang, J. Li, J. Jiang, X. Wu, R. Gao, Z. Yang, S. Liu, Sol. Energy Mater. Sol. Cells 2018, 187, 1.
[65] H. Li, G. Tong, T. Chen, H. Zhu, G. Li, Y. Chang, L. Wang, Y. Jiang, J. Mater. Chem. A 2018, 6, 14255.
[66] P. Becker, J. A. Márquez, J. Just, A. Al-Ashouri, C. Hages, H. Hempel, M. Jošt, S. Albrecht, R. Frahm, T. Unold, Adv. Energy Mater. 2019, 0, 1900555.
[67] Z. Chen, J. J. Wang, Y. Ren, C. Yu, K. Shum, Appl. Phys. Lett. 2012, 101, 093901.
[68] M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 2014, 26, 7122.
[69] G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688.
[70] X. Zhang, Q. Wang, Z. Jin, J. Zhang, S. Liu, Nanoscale 2017, 9, 6278.
[71] Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian, J. Sun, G. Zhu, G. Wang, S. Liu, Adv. Energy Mater. 2018, 8, 1800007.
[72] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92.
[73] J.-F. Liao, H.-S. Rao, B.-X. Chen, D.-B. Kuang, C.-Y. Su, J. Mater. Chem. A 2017, 5, 2066.
[74] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Science Advances 2017, 3, e1700841.
[75] Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Joule 2017, 1, 371.
[76] X. Zheng, C. Wu, S. K. Jha, Z. Li, K. Zhu, S. Priya, ACS Energy Letters 2016, 1, 1014.
[77] X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S. F. Liu, ACS Appl. Mater. Interfaces 2018, 10, 7145.
[78] C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, J. Am. Chem. Soc. 2018, 140, 3825.
[79] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 2016, 6, 1502458.
[80] K. Wang, Z. Jin, L. Liang, H. Bian, H. Wang, J. Feng, Q. Wang, S. Liu, Nano Energy 2019, 58, 175.
[81] S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang, H. Chen, iScience 2019, 15, 156.
[82] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, Nano Lett. 2017, 17, 2028.
[83] C. F. J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, J. Bing, B. Wilkinson, L. Hu, R. Patterson, S. Huang, A. Ho-Baillie, J. Mater. Chem. A 2018, 6, 5580.
[84] H. Zhao, J. Xu, S. Zhou, Z. Li, B. Zhang, X. Xia, X. Liu, S. Dai, J. Yao, Adv. Funct. Mater. 2019, 29, 1808986.
[85] Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu, S. Zhang, ACS Energy Letters 2017, 2, 2219.
[86] D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang, H. Wang, L. Liang, Q. Wang, S. F. Liu, ACS Energy Letters 2018, 3, 970.
[87] J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L. K. Ono, Y. Qi, Adv. Energy Mater. 2018, 8, 1800504.
[88] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang, A. Ho-Baillie, ACS Energy Letters 2017, 2, 2319.
[89] R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746.
[90] M. Konstantakou, T. Stergiopoulos, J. Mater. Chem. A 2017, 5, 11518.
[91] K. P. Marshall, M. Walker, R. I. Walton, R. A. Hatton, Nature Energy 2016, 1, 16178.
[92] K. P. Marshall, R. I. Walton, R. A. Hatton, J. Mater. Chem. A 2015, 3, 11631.
[93] T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 836.
[94] W. Li, J. Li, J. Li, J. Fan, Y. Mai, L. Wang, J. Mater. Chem. A 2016, 4, 17104.
[95] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 3061.
[96] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photon. 2014, 8, 489.
[97] F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 11445.
[98] T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar, N. Mathews, J. Mater. Chem. A 2015, 3, 14996.
[99] S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, S. I. Seok, J. Am. Chem. Soc. 2016, 138, 3974.
[100] W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.-G. Xiong, Y. Yan, Adv. Mater. 2016, 28, 9333.
[101] Y. Zhou, H. F. Garces, B. S. Senturk, A. L. Ortiz, N. P. Padture, Mater. Lett. 2013, 110, 127.
[102] S. Dharani, H. K. Mulmudi, N. Yantara, P. T. Thu Trang, N. G. Park, M. Graetzel, S. Mhaisalkar, N. Mathews, P. P. Boix, Nanoscale 2014, 6, 1675.
[103] K. Shum, Z. Chen, J. Qureshi, C. Yu, J. J. Wang, W. Pfenninger, N. Vockic, J. Midgley, J. T. Kenney, Appl. Phys. Lett. 2010, 96, 221903.
[104] N. Wang, Y. Zhou, M.-G. Ju, H. F. Garces, T. Ding, S. Pang, X. C. Zeng, N. P. Padture, X. W. Sun, Adv. Energy Mater. 2016, 6, 1601130.
[105] D. Sabba, H. K. Mulmudi, R. R. Prabhakar, T. Krishnamoorthy, T. Baikie, P. P. Boix, S. Mhaisalkar, N. Mathews, J. Phys. Chem. C 2015, 119, 1763.
[106] L. Peedikakkandy, P. Bhargava, RSC Adv. 2016, 6, 19857.
[107] R. Padmavathy, A. Amudhavalli, R. Rajeswarapalanichamy, K. Iyakutti, Int. J. Mod Phys B 2019, 33, 1950003.
[108] J. W. Kim, H. J. Kim, H. H. Lee, T. Kim, J.-J. Kim, Adv. Funct. Mater. 2011, 21, 2067.
[109] M. Shahiduzzaman, K. Yonezawa, K. Yamamoto, T. S. Ripolles, M. Karakawa, T. Kuwabara, K. Takahashi, S. Hayase, T. Taima, ACS Omega 2017, 2, 4464.
[110] J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang, S. Liu, Adv. Energy Mater. 2018, 8, 1703246.
[111] Y.-C. Huang, C.-S. Tsao, Y.-J. Cho, K.-C. Chen, K.-M. Chiang, S.-Y. Hsiao, C.-W. Chen, C.-J. Su, U. S. Jeng, H.-W. Lin, Sci. Rep. 2015, 5, 13657.
[112] P. Schulz, J. O. Tiepelt, J. A. Christians, I. Levine, E. Edri, E. M. Sanehira, G. Hodes, D. Cahen, A. Kahn, ACS Appl. Mater. Interfaces 2016, 8, 31491.
[113] C.-Y. Chen, J.-H. Chang, K.-M. Chiang, H.-L. Lin, S.-Y. Hsiao, H.-W. Lin, Adv. Funct. Mater. 2015, 25, 7064.
[114] C.-Y. Chen, W.-H. Lee, S.-Y. Hsiao, W.-L. Tsai, L. Yang, H.-L. Lin, H.-J. Chou, H.-W. Lin, J. Mater. Chem. A 2019, 7, 3612.