研究生: |
陳冠佐 Chen, Guan-Zuo |
---|---|
論文名稱: |
光纖周界入侵感測系統之研製 Design and Implementation of a Fibre Optic Perimeter Intrusion Detection System |
指導教授: |
鐘太郎
Jong, Tai-Lang |
口試委員: |
王立康
Li-Karn Wang 黃裕煒 Yue-Wei Huang 吳志宏 Chih-Hung Wu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 光纖感測 、大範圍入侵監控系統 |
外文關鍵詞: | Fibre Optic Interferometric Sensors, Perimeter Intrusion Detection Systems |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對已有的光纖感測硬體架構研製一套創新的長周界入侵感測系統,此光纖感測硬體架構將光纖分成多區段的感測位置以分辨不同位置的入侵事件,系統的研製包含入侵事件判斷演算法及即時監控介面。
入侵事件的判斷法是以監度式學習的方法建立分類模組,從記錄的特徵資料訓練最佳的分類模組,以此分類模組判斷入侵與否。入侵事件的判斷計算是訊號擷取器操作在2.5kHz的取樣頻率下,連續擷取512筆訊號數值,經頻率域換算後,以本論文提出的兩個特徵參數計算法計算特徵值,再藉由訓練好的分類模組判斷是否為入侵事件。
本論文以兩個實驗測試入侵判斷演算法的判別效果,其一是改變作用於光纖的受力程度,測試系統能否辨別不同程度的外力,區分入侵與非入侵事件的訊號,並從此實驗找出最適合的門檻頻率,應用於特徵參數的計算上。另一個實驗則測試系統在實際環境下,能否從不同事件中區分入侵事件與環境擾動的差異,並觀察環境擾動對系統的影響,此實驗測試多種分類法,以找出適用於監控的分類方法,經實驗數據比較後,以二次識別分析有最佳的分類效果。從上述兩實驗可證明此入侵判斷的演算法有良好的辨識能力。
藉由本論文的入侵事件判斷演算法,監控系統能夠自動偵測防區內的異常事件,發生異常事件時,監控系統會即時記錄發生的時間及所擷取的訊號數值,並顯示於監控介面上。
In this thesis, we implement an innovative perimeter intrusion detection system, including a security interface and an algorithm for discriminating between intrusion and nuisance events, for the existing fiber optic sensing hardware architecture. While DAQ (Data Acquisition) continuously samples fiber sensor output under a sampling frequency of 2.5 kHz, the system first compute the high and low frequency features out of every 512 sample values and then use the features to discriminate between events.
We design two experiments to evaluate the effectiveness of the system. To test whether the system can discriminate between intrusion and nuisance events, the first experiment changes the force acting on the fiber. If the system works rightly, it will make right decision according to force measured. The second experiment is performed just like the first experiment in many ways, but moves the scene from the laboratory to the real world in order to take the interference of environment into account. In these two experiments, our system is capable to make right decisions in discriminating between events.
This system automatically detects abnormal events appeared in the Area. When an abnormal event occurs, the system records the time and sampled values of the event immediately. In the meantime, the security interface displays alarms.
[1] Ann S. Barry and James Czechanski, “Ground surveillance radar for perimeter intrusion detection,“ The 19th Digital Avionics Systems Conference, 2000. Proceedings. DASC. , Vol. 2, pp. 7B5/1 - 7B5/7, October 2000.
[2] Sarjoun S. Doumit and Dharma P. Agrawal, “Self-organized criticality and stochastic learning based intrusion detection system for wireless sensor network,“ Military Communications Conference, 2003. MILCOM '03. 2003 IEEE, Vol. 1, pp.609 - 614, October 2003.
[3] Yuheng Liu, Chao Li, Yang He, Jing Wu and Zhang Xiong, “A Perimeter Intrusion Detection System Using Dual-Mode Wireless Sensor Networks,“ IEEE Communications and Networking in China, 2007. CHINACOM '07. Second International Conference on, pp.861 - 865, August 2007.
[4] P. Hosmer, “Use of laser scanning technology for perimeter protection,“ IEEE Aerospace and Electronic Systems Magazine, Vol. 19, pp. 13 - 17, August 2004.
[5] Reiss, Martin H. and Solomon, Elias E., “Infrared intrusion detection apparatus,” United States Patent 3886360, 1975.
[6] Seedahmed S. Mahmoud and Jim Katsifolis, ”Robust Event Classification for a Fiber Optic Perimeter Intrusion Detection System Using Level Crossing Features and Artificial Neural Networks,” Fiber Optic Sensors and Applications VII, Vol. 7677, pp. 767708-1 - 767708-12, April 2010.
[7] Mieczyslaw Szustakowski, Marek yczkowski, Wieslaw Ciurapiñski, Marcin Kondrat and Norbert Palka, “Fiber sensors for optic cables monitoring,” Optical Security and Safety, SPIE Vol. 5566, pp. 300 - 305, August 2004.
[8] “Future Fibre Technologies Pty Ltd, ” http://www.fftsecurity.com/index.php
[9] Alan D. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebelead, “Fiber Grating Sensors,” Journal Of Lightwave Technology, Vol. 15, No. 8, pp. 1442 - 1463, August 1997.
[10] Dryver Huston, William B. Spillman Jr., Wolfgang Sauter, and Noel Pelczarski, ” Measuring micro floor vibrations with distributed fiber optic sensors,” Distributed Fiber Optical Sensors and Measuring Networks, Vol. 4357, pp. 141 - 147, 2001.
[11] Byoungho Lee, “Review of the present status of optical fiber sensors,” Optical Fiber Technology 9 (2003), pp. 57 – 79, August 2002.
[12] Sagnac, Georges, "L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme," Comptes Rendus 157, pp. 708 – 710, 1913.
[13] Sagnac, Georges, "Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe tournant," Comptes Rendus 157, pp. 1410 – 1413, 1913.
[14] B Culshaw, “The optical fibre Sagnac interferometer: an overview of its principles and applications,” Institute Of Physics Publishing, Meas. Sci. Technol. 17 (2006), pp. R1 – R16, 30 November 2005.
[15] 林武文、林永豊,“光纖干涉式船艦振動監測系統,” 第十九屆中國造船暨輪機工程研討會及國科會成果發表會論文集,pp. 80 - 84,2007年3月。
[16] David B. Mortimore, “Fiber Loop Reflectors,” Journal Of Lightwave Technology, Vol. 6, No. 7, pp. 1217 - 1224, July 1988.
[17] Marek Zyczkowski , Mieczyslaw Szustakowski, Norbert Pałka and Marcin Kondrat, ”Fibre optic perimeter protection sensor with intruder localization,” Unmanned/Unattended Sensors and Sensor Networks, Vol. 5611, pp. 71 - 78, 2004.
[18] Alastair D. McAulay and Jian Wang, “A Sagnac Interferometer Sensor System for Intrusion Detection and Localization,” Enabling Photonic Technologies for Aerospace Applications VI, Proceedings of SPIE Vol. 5435, pp. 114 - 119, 2004.
[19] Yan Liu, Jun Jia, Pei-lin Tao, Guo-lu yin, Zhong-wei Tan, Wen-hua Ren, Shui-sheng Jian “Signal processing of Sagnac fiber interferometer used as distributed sensor with wavelets,“ Proc. of SPIE-OSA-IEEE Asia Communications and Photonics, SPIE Vol. 7990, pp. 79900H-1 - 79900H-6, 2011.
[20] Stuart J. Russell, Keith R. C. Brady, and John P. Dakin, “Real-Time Location of Multiple Time-Varying Strain Disturbances, Acting Over a 40-km Fiber Section, Using a Novel Dual-Sagnac Interferometer,” Journal of Lightwave Technology, Vol. 19, No. 2, pp. 205 - 213, February 2001.
[21] Anthony Dandridge and Alan D. Kersey, “Overview of Mach -Zehnder Sensor Technology and Applications,” Fiber Optic and Laser Sensors VI, SPIE Vol. 985, pp. 34 - 52, 1988.
[22] Qizhen Sun, Deming Liu, Jian Wang and Hairong Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,“ Optics Communications, Vol. 281, pp. 1538 - 1544, March 2008.
[23] Xiaolei Li, Qizhen Sun, Jianghai Wo, Manliang Zhang and Deming Liu, “Hybrid TDM/WDM-Based Fiber-Optic Sensor Network for Perimeter Intrusion Detection,” Journal of Lightwave Technology, Vol. 30, pp. 1113 – 1120, April, 2012.
[24] Seedahmed S. Mahmoud and Jim Katsifolis, “Elimination of Rain-Induced Nuisance Alarms in Distributed Fiber Optic Perimeter Intrusion Detection Systems,“ Fiber Optic Sensors and Applications VI, SPIE Vol. 7316, pp. 731604-1 - 731604-11, 2009.
[25] “Fotech Solutions Ltd,” http://www.fotechsolutions.com/
[26] Rich Caruana and Alexandru Niculescu-Mizil, “An Empirical Comparison of Supervised Learning Algorithms,” Proceeding of the 23rd International Conference on Machine Learning, pp. 161 - 168, 2006.
[27] Jaime G. Carbonell, Ryszard S. Michalski and Tom M. Mitchell, Machine Learning, Springer Berlin Heidelberg, 1983.
[28] Draper, N. R. and Smith, H., Applied regression analysis, 2nd ed., John Wiley and Sons, Inc., New York, N. Y., 1981.
[29] Hearst, M.A., Dumais, S.T., Osman, E., Platt, J. and Scholkopf, B., “Support Vector Machines,” IEEE Intelligent Systems and their Applications, Vol. 13, pp. 18 – 28, August 1998.
[30] S CHOI, “Discrimination and classification: Overview,” Computers & Mathematics With Applications, Vol. 12, pp. 173 – 177, 1986.
[31] J.R. Quinlan, “Induction of Decision Trees,“Machine Learning, Vol. 1, pp. 81 – 106, 1986.
[32] N. S. Arora, R. D. Blumofe and C. G. Plaxton, “Thread Scheduling for Multiprogrammed Multiprocessors,” Theory of Computing Systems, Vol. 34, pp. 115 – 144, April 2001.
[33] Michael D. McGehee, Rahul Gupta, Siegfried Veenstra, E. Kirk Miller, María A. Díaz-García and Alan J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” PHYSICAL REVIEW B, Vol. 58, pp. 7035 – 7039, September 1998.
[34] 陳漢揚、陳茂雄、林武文,”The Promotion of the Performance Based on Dual Sagnac Interferometric Hydrophones,” Master Thesis of NSYSU, July 2006.
[35] “Visual Studio,” http://msdn.microsoft.com/zh-tw/vstudio/
[36] “MathWorks,” http://www.mathworks.com/index.html?s_tid=gn_logo
[37] I.T. Jolliffe, Principal component analysis (Second Edition), Springer, 2002.
[38] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Computation, Vol. 12, pp. 2385 - 2404, October 2000.
[39] James D. Knoke, “Discriminant Analysis with Discrete and Continuous Variables,” International Biometric Society, Vol. 38, pp. 191 – 200, March 1982.
[40] Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, Discrete-Time Signal Processing (Second Edition), Prentice-Hall, Inc, 1989.
[41] Arun A. Ross, Karthik Nandakumar and Anil K. Jain, Handbook of multibiometrics, Springer Science+Business Media, 2006.
[42] Pedro Navarro, Andrés Iborra , Carlos Fernández, Pedro Sánchez and Juan Suardíaz, “A Sensor System for Detection of Hull Surface Defects,” Sensors 2010, 10, pp. 7067 - 7081, 26 July 2010.