簡易檢索 / 詳目顯示

研究生: 林莨凱
Lin, Liang-Kai
論文名稱: 基於米氏酸衍生物之熱固性樹脂之合成與性質研究
Preparation and Properties of Thermosetting resins based on Meldrum’s acid derivatives
指導教授: 劉英麟
Liu, Ying-Ling
口試委員: 賴君義
Lai, Juin-Yih
蔡敬誠
Tsai, Jing-Cherng
鄭如忠
Jeng, Ru-Jong
蔡協致
Tsai, Hsieh-Chih
胡蒨傑
Hu, Chien-Chieh
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 熱固性樹脂反應性高分子米氏酸交聯反應生物降解高分子烯酮基
外文關鍵詞: thermosetting resin, reactive polymer, meldrum's acid, crosslinking reaction, biodegradable polymer, ketene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成以開發新穎的熱固性高分子樹脂為目標,選擇米氏酸(Meldrum’s acid, MA)為反應官能基。米氏酸在高溫下,會進行裂解反應而放出一個分子的丙酮與二氧化碳,並生成具有高反應性的烯酮(ketene)官能基,此官能基可以進行[2+2]加成反應成四元環的二酮結構,也對其他雙鍵或是親核基(nucleophile)具有高反應性,因此米氏酸適合用於建構熱致交聯反應系統和設計與合成新穎的熱固性高分子。本研究首先合成帶有米氏官能基之單體,並引入可與烯酮基進行加成反應的官能基於單體結構之中,如呋喃基和苯乙烯,以此為單體進行熱固性交聯反應,建立第一個米氏酸熱固性高分子。
    第一個部分,帶有呋喃與苯乙烯結構的單體(MA-FS)與帶有一對苯乙烯結構的單體(MA-SS),分別利用Knoevenagel condensation與condensation reaction反應進行合成,並逕由傅立葉轉換紅外線光譜儀(FT-IR)、核磁共振儀(NMR)、元素分析儀(EA)與氣相層析質譜儀(GC/MS)等方法確認其化學結構。
    將MA-FS與MA-SS進行加熱加工,製備成塊材,並檢測其物理性質。於實驗結果發現MA-FS所形成的熱固性樹脂具有較佳的在熱穩定性以及較高的炭焦生成率,此導因於MA-FS的結構具有呋喃基,與烯酮基反應形成一六環結構,其結構比起四環結構來得穩定,所以熱穩定性較好。在空氣下之TGA圖譜分析下, MA-SS的熱固性樹脂則具有較高的焦炭生成率,顯示其具有較佳的抗氧化熱穩定性。
    在機械性質分析方面,兩者在室溫的儲存模數差異不大,約為2.7Gpa且在210 oC下沒有出現明顯的玻璃轉移溫度,可歸因於此樹脂的高交聯密度限制了分子運動,因此,在高溫區的儲存模數也相當高。在SEM與TEM的觀察下,其表面與截面的型態都相當平坦且均勻,此外,在TEM圖譜中發現有層狀結構的自組裝行為。因為聚合過程中釋放氣體小分子,而使得此熱固性樹脂的自由體積高於熱情傳統樹脂,使其具有非常低的介電常數,約為2。
    本研究第二個部分仍以製備新穎米氏酸單體為出發點,設計雙端帶有米氏酸官能基的化合物,並逕由FT-IR、NMR、EA與GC/MS等方法確認成功製備出新穎米氏酸單體(MAPMA)。
    利用醇基可催化米氏酸開環反應的特性,與不同結構的雙醇基單體進行等當量摻混,製備主鏈上帶有脂肪族基的熱固性材料。此材料具有良好的熱穩定性。
    生物降解測試實驗中,兩個月的重量損失至70%,證明此材料確實擁有生物降解的能力。在SEM上也可以觀察到不論是截面或是表面,皆有被酵素液腐蝕的情況出現。因此,本研究成功開發出一種直接合成具有生物降解特性的熱固性高分材料。
    本研究第三部分,直接以米氏酸為單體,透過使用Knoevenagel condensation反應與雙官能基的鹵化物聚合出帶有米氏酸結構的聚合物,並逕由FT-IR、NMR與GPC等方法確認其結構以及分子量。
    此高分子可直接進行熱交聯而獲得熱固性高分子薄膜,具有良好的熱穩定性與機械強度。此外,也擁有介電常數低達2左右良好電器特性。此部分研究除發明直接以米氏酸單體進行聚合反應的新穎高分子合成途徑外,所合成之高分子結構可視為具有米氏酸官能基的類聚乙烯高分子,提供一種合成官能基化聚乙烯高分子的新穎而簡便的方法。


    Meldrum’s acid (MA) could perform thermolysis reaction, with releasing acetone and CO2 molecules, to generate a highly reactive ketene group, which could perform self-dimerization to generate 4-membered cyclic 1,3-dione group and addition reactions toward other unsaturated groups and nucleophile groups. Consequently, MA is highly potential for involving in thermally induced crosslinking reactions and preparation of corresponding thermosetting resins. The features of MA and its derivatives have been utilized in this work for developments of new types of thermosetting resins and crosslinked polymers.
    The first part of this work involves design and synthesis of multi-functional MA derivatives to be used as reactive monomers, like other conventional thermosetting resins, for demonstration a new type of MA-based thermosetting resins. Two monomers, MA-SS which is a MA compound possesses two styrenic groups and MA-FS possessing one styrenic and one furan group, have been synthesized and spectrally characterized. Both monomers result in thermosetting resins showing high glass transition temperatures above 210 oC, high thermal stability (>350 oC), and satisfied mechanical strength. It is noteworthy that the MA-based resins exhibit relatively low dielectric constants of about 2.0, which has been attributed to their high free volume fractions generated with the evolved acetone and CO2 molecules in the curing processes. Hence, a new type of MA-based thermosetting resins possessing inherent low dielectric constants has been explored.
    The second part is preparation of biodegradable polyesters with MA derivatives. A bifunctional aliphatic MA compound is prepared as used as a monomer to reactive various aliphatic diol and triol compounds to result in the corresponding linear and crosslinked aliphatic polyesters. The polyesters have been subjected to biodegradability tests, and the biodegradation behavior has been observed with weight loss and SEM. The polyesters show a high fraction of biodegradation-induced weight loss of 70 wt%. It is concluded here that a novel and convenient approach for preparation of biodegradable polyesters has been demonstrated.
    The final part of this work is about the developments of polymerization routes directly using MA as a monomer. MA has been reacted with dihalide compounds through dehydrohalide reaction to result in the corresponding polymers possessing MA pendent groups. The prepared polymers hence are reactive polymers which could carry out further polymer modification and crosslinking reaction through the pendent MA groups. The chemical structures and molecular weights of the obtained polymers have been characterized with spectral methods and gel permeation chromatography method, respectively. It is noteworthy that the crosslinked products of the MA-containing polymers still shows low dielectric constants of about 2.0, providing addition supports to that MA based polymers could exhibit inherent low-dielectric constants.

    中文摘要 I Abstract III 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 米氏酸(Meldrum’s acid, MA)之簡介 4 1-3 烯酮(Ketene)之簡介 8 1-4米氏酸的合成與改質 10 1-4-1 米氏酸與醛基的Knoevenagel condensation反應 10 1-4-1-1 Knoevenagel condensation之反應條件 10 1-4-1-2 Knoevenagel condensation之還原劑 11 1-4-2 米氏酸與鹵化物的condensation reaction 反應 12 1-5可聚合米氏酸單體以及其聚合物 15 1-6生物降解之簡介 31 1-7研究目地 36 第二章 實驗藥品與儀器設備 37 2-1 實驗藥品 37 2-2 實驗儀器 39 第三章 以米氏酸官能基製備新穎的熱固性材料 43 3-1 文獻回顧 43 3-2 實驗步驟 45 3-2-1 含有呋喃官能基的米氏酸單體(MA-F)製備 45 3-2-2 含有呋喃與苯乙烯官能基的米氏酸(MA-FS)單體製備 45 3-2-3 含有兩個苯乙烯官能基的米氏酸(MA-SS)單體製備 46 3-2-4以熱固化法製備MA-FS交聯聚合物 47 3-2-5以熱固化法製備MA-SS交聯聚合物 47 3-3 結果分析與結果討論 48 3-3-1 單體鑑定 48 3-3-1-1 MA-F結構之鑑定分析 48 3-3-1-2 MA-FS結構之鑑定分析 51 3-3-1-3 MA-SS結構之鑑定分析 55 3-3-2熱性質分析 58 3-3-2-1其米氏酸單體之熱開環交聯聚合物之鑑定分析 59 3-3-2-2 其米氏酸熱固性高分子之熱性質分析 61 3-3-3機械性質分析 63 3-3-3-1 其米氏酸熱固性高分子之機械性質分析 63 3-4 結論 70 第四章 具生物降解之熱固性材料 71 4-1文獻回顧 71 4-2 實驗步驟 73 4-2-1含有雙米氏酸官能基的米氏酸單體 73 4-2-2以熱固化法製備酯基官能團聚合物 73 4-3結果分析與結果討論 74 4-3-1單體鑑定 74 4-3-1-1 MAPMA結構之鑑定分析 74 4-3-2熱性質分析 78 4-3-2-1具有生物降解能力之塊材之鑑定分析 78 4-3-2-2具有生物降解能力之塊材之熱性質分析 80 4-3-2-3熱固性高分子之生物降解能力分析 83 4-4 結論 87 第五章 以Condensation reaction聚合米氏酸聚合物 88 5-1 文獻回顧 88 5-2實驗步驟 90 5-2-1 含有不同碳數之烷類與米氏酸反應製備 90 5-2-2 以熱固化法製備PMA3C~5C聚合物 91 5-3結果分析與結果討論 92 5-3-1結構鑑定 92 5-3-1-1 PMA3C之結構鑑定 92 5-3-1-2 PMA4C之結構鑑定 95 5-3-1-2 PMA5C之結構鑑定 98 5-3-2熱性質分析 102 5-3-2-1其米氏酸寡聚物之熱開環交聯聚合物之熱性質分析 102 5-3-3機械性質分析 106 5-3-3-1其米氏酸寡聚物之熱開環交聯聚合物之機械性質分析 106 5-4 結論 110 第六章 總結 111 第七章 參考文獻 113

    1. Holly, F. W.; Cope, A. C., Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine. Journal of the American Chemical Society 1944, 11, (66), 1875-1879.
    2. Burke, W. J., 3,4-dihydro-l,3,2H-benzoxazines. Reaction of p-substituted phenols with N,N-dimethylo lamines. Journal of the American Chemical Society 1949, 71, (2), 609-612.
    3. Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. Meldrum’s Acids as Acylating Agents in the Catalytic Intramolecular Friedel-Crafts Reaction J. Org. Chem 2005, 70, 1316-1327.
    4. Burke, D. J.; Kawauchi, T.; Kade, M. J.; Leibfarth, F. A.; McDearmon, B.; Wolffs, M.; Kierstead, P. H.; Moon, B.; Hawker, C. J. Ketene-Based Route to rigid Cyclobutanediol Monomers for the Replacement of BPA in High Performance Polyesters ACS Macro Lett 2012, 1, 1228−1232.
    5. Wolffs, M.; Kade, M. J.; Hawker, C. J., An Energy Efficient and Facile Synthesis of High Molecular Weight Polyesters using Ketenes Chem. Commun 2011, 47, 10572–10574.
    6. Gonzalez, L.; Ramis, X.; Salla, J. M.; Mantecon, A.; Serra, A. Reduction of the Shrinkage of Thermosets by the Cationic Curing of Mixtures of Diglycidyl Ether of Bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione) J Polym Sci Part A: Polym Chem 2006, 44, 6869–6879.
    7. Leibfarth, F. A.; Wolffs, M.; Campos, L. M.; Delany, K.; Treat, N.; Kade, M. J.; Moon, B.; Hawker, C. J. Low-Temperature Ketene Formation in Materials Chemistry Through Molecular Engineering Chem. Sci 2012, 3, 766–771.
    8. Meldrum, A. N. A β-lactonic acid from acetone and malonic acid J. Chem. Soc. Trans 1908, 93, 598-601.
    9. Davidson, D.; Bernhard, S. A. The Structure of Meldrum's Supposed β-Lactonic Acid Journal of the American Chemical Society 1948, 70, 3426–3428.
    10. Oikawa, Y.; Sugano, K.; Yonemitsu, O. Meldrum's acid in Organic Synthesis. 2. A General and Versatile Synthesis of .Beta.-Keto Esters J. Org. Chem 1978, 43, 2087.
    11. Pemberton, N.; Jakobsson, L.; Almqvist, F. Synthesis of Multi Ring-Fused 2-Pyridones via an Acyl-Ketene Imine Cyclocondensation Org. Lett 2006, 8, 935.
    12. Perreault, S.; Spino, C. Meldrum's Acid-Derived Thione Dienophile in a Convergent and Stereoselective Synthesis of a Tetracyclic Quassinoid Intermediate Org. Lett 2006, 8, 4385.
    13. Danheiser, R. L.; Renslo, A. R.; Amos, D. T.; Wright G. T. Preparation of Substituted Pyridines via Regiocontrolled [4+2] Cycloaddition of Oximinosulfonates: Methyl 5-Methylpyridine -2-Carboxylate Org. Synth. 2003, 80, 133.
    14. Danishefsky, S. Electrophilic Cyclopropanes in Organic Synthesis Acc. Chem. Res 1979, 12, 66.
    15. Danishefsky, S.; Singh, R. K. A Spiroactivated Vinylcyclopropane J. Org. Chem 1975, 40, 3807.
    16. Huang, X.; Liu, Z. Solid-Phase Synthesis of 4(1H)-Quinolone and Pyrimidine Derivatives Based on a New ScaffoldPolymer-Bound Cyclic Malonic Acid Ester J. Org. Chem 2002, 67, 6731.
    17. Dumas, A. M.; Fillion, E. Meldrum's Acids and 5-Alkylidene Meldrum's Acids in Catalytic Carbon-Carbon Bond-Forming Processes Accounts of Chemical Research 2009, 43, 440-454.
    18. Lipson, V. V.; Gorobets, N. Y. One Hundred Years of Meldrum's acid: Advances in the Synthesis of Pyridine and Pyrimidine Derivatives Mol Divers 2009, 13, 399-419.
    19. Hawker, C. J.; Moon, B.; Leibfarth, F. A.; Campos, L. M.; Kang, M.; Ham, M.; Gupta, N., A facile route to ketene-functionalized polymers for general materials applications. Nature Chemisdtry 2010, 2, 207-212.
    20. Shirokava, E. A.; Segal, G. M.; Torgov, I. V. Bioorg., Use of Meldrum's acid in the syntheses of low molecular weight bioregulators. 3. Synthesis of coumarin-3-carboxylic acids and their derivatives. Khim. 1988, 14, 236–242.
    21. Fildes, D.; Caignaert, V.; Villemin, D.; Jaffres, P. A., Potassium exchanged zirconium hydrogen phosphateZr(O3POK)2: a heterogeneous basic catalyst for Knoevenagel reaction without solvent. Green Chem. 2001, 3, 52–56.
    22. Bandgar, B. P.; Uppalla, L. S.; Sadavarte, V. S., Lithium perchlorate and lithium bromide catalyzed solvent free one pot rapid synthesis of 3-carboxycoumarins under microwave irradiation. J. Chem. Res. Synop. 2002, 40–41.
    23. Hu, Y.; Wei, P.; Huang, H.; Le, Z.-G.; Chen, Z.-C., Organic reactions in ionic liquids. Ionic liquid ethylammonium nitrate-promoted Knoevenagel condensation of Meldrum's acid with aromatic aldehydes. Synth. Commun. 2005, 35, 2955–2960.
    24. Mudhar, H.; Witty, A., One-pot conversion of alkyl aldehydes into substituted propanoic acids via Knoevenagel condensation with Meldrum's acid. Tetrahedron Lett. 2010, 51, 4972–4974.
    25. Song, A.; Wang, X.; Lam, K. S., A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones. Tetrahedron Lett. 2003, 44, 1755–1758.
    26. Rao, P. S.; Venkatratnam, R. V., Indian Anhydrous zinc chloride catalysis in carbonyl-methylene condensations: synthesis of arylideneacetonitriles and arylidene heterocycles. J. Chem. 1993, 32B, 484.
    27. Villemin, D., Dry-catalyzed condensation of Meldrum's acid. Chem. Ind. 1983, 478–479.
    28. Thorat, M. T.; Jagdale, M. H.; Mane, R. B.; Salunkhe, M. M.; Wadagaonkar, P. P., Clay-catalyzed Knoevenagel condensation. Curr. Sci. 1987, 56, 771–772.
    29. Bandgar, B. P.; Uppalla, L. S.; Kurule, D. S., Solvent-free one-pot rapid synthesis of 3-carboxycoumarins. Green Chem. 1999, 1, 243–245.
    30. Davidson, D.; Bernhard, S. A., The structure of Meldrum's supposed β-lactonic acid. J. Am. Chem. Soc. 1948, 70, 3426–3428.
    31. Corey, E. J., The mechanism of the decarboxylation of α,β- and β,γ-unsaturated malonic acid derivatives and the course of decarboxylative condensation reactions in pyridineJ. Am. Chem. Soc. 1952, 74, 5897–5905.
    32. Kraus, G. A.; Krolski, M. E., Synthesis of a Precursor to Quassimarin. J. Org. Chem. 1986, 51, 3347–3350.
    33. Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G., Clean Synthesis in Water. Part 2: Uncatalysed Condensation Reaction of Meldrum's acid and Aldehydes. Tetrahedron Letters 2001, 42, 5203–5205.
    34. Chakrabarty, M.; Mukherjee, R.; Chakrabarty, M.; Arima, S.; Harigaya, Y., An Expeditious Approach to Knoevenagel Condensation of Meldrum's Acid on Neutral Alumina Using Microwave Irradiation. Lett. Org. Chem. 2006, 3, 868–871.
    35. Kaupp, G.; Naimi-Jamal, M. R.; Schmeyers, J., Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron 2003, 59, 3753–3760.
    36. Watson, B. T.; Christiansen, G. E., Solid phase synthesis of substituted coumarin-3-carboxylic acids via the Knoevenagel condensation. Tetrahedron Lett. 1998, 39, 6087–6090.
    37. Darvatkara, N. B.; Deorukhkara, A. R.; Bhilarea, S. V.; Salunkhea M. M. Ionic Liquid–Mediated Knoevenagel Condensation of Meldrum's Acid and Aldehydes. Synthetic Communications 2006, 36, 3043-3051.
    38. Wright, A. D.; Haslego, M. L.; Smith, F. X., Borohydride Reduction of Substituted Isopropylidene. Tetrahedron Lett 1979, 20, 2325-2326.
    39. Hrubowchak, D. M.; Smith, F. X. The Reductive Alkylation of Meldrum's acid Tetrahedron Lett 1983, 24, 4951-4954.
    40. Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M., Meldrum’s Acids as Acylating Agents in the Catalytic Intramolecular Friedel-Crafts Reaction. J. Org. Chem 2005, 70, 1316-1327.
    41. Chioccara, F.; Novellino, E., A Convenient One Step Synthesis of 5-Cystein-S-yldopa Using Ceric Ammonium Nitrate. Synthetic communications 1986, 24, 185-188.
    42. Chen, B. C.; Lue, P., A Convenient Preparation of 5,5-Dialkyl Meldrum's acids. Synthetic communications 1992, 16, 967-971.
    43. Hawker, C. J.; Bazan, G. C.; Leibfarth, F. A.; Schneider, Y.; Lynd, N. A.; Schultz, A.; Moon, B.; Kramer, E. J., Ketene Functionalized Polyethylene: Control of Cross-Link Density and Material Properties. J. AM. CHEM. SOC. 2010, 132, 14706–14709.
    44. Hawker, C. J.; Wollfs, M.; Kade, M. J., An energy efficient and facile synthesis of high molecular weightpolyesters using ketenes. Chem. Commun. 2011, 47, 10572–10574.
    45. Choi, T. L.; Kim, J.; Kang, E. H., Cyclopolymerization To Synthesize Conjugated Polymers Containing Meldrum's Acid as a Precursor for Ketene Functionality. Macro Lett. 2012, 1, 1090−1093.
    46. Bang, J.; Hawker, C. J.; Jung, H.; Leibfarth, F. A.; Woo, S.; Lee, S.; Kang, M., Moon, B., Efficient Surface Neutralization and Enhanced Substrate Adhesion through Ketene Mediated Crosslinking and Functionalization. Adv. Funct. Mater. 2012, 23, 1957-1602.
    47. Pollet, E.; Averous, L., Environmental Silicate Nano-Biocomposites. Springer 2012, 450.
    48. Catai B., Handbook of Biodegradable Polymers. Rapra Technology. Shrewsbury. 2005.
    49. Nelson, D., Cox, M., Lehninger principles of biochemistry (5th ed.), W. H. Freeman 2008.
    50. Yaszemski M., Biomaterials Science 2nd Edition. Academic Press 2004.
    51. Andreas; Adam, S., Handbook of biodegradable polymers : synthesis, characterization and applications. Weinheim: Wiley-VCH. 2011.
    52. Doi Y., Microbial polyesters. New York: VCH Publishers, Inc; 1990.
    53. Bastioli C. Starch-polymer composites. In: Scott G, Gilead D, editors. Degradable polymers, principles and applications. London: Chapman & Hall 1995. 112–133.
    54. Tokiwa Y., Suzuki T., Hydrolysis of polyesters by lipase. Nature 1977, 270, 76–78.
    55. Hea, F., Lia, S., Verta, M., Zhuo, R., Enzyme-catalyzed polymerization and degradation of copolymers prepared from e-caprolactone and poly(ethylene glycol). Polymer 2003, 44, 5145–5151.
    56. Shibata M., Ozawa K., Urata K., Teramoto N., Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability 2004, 86, 401-409.
    57. Lin L. K., Liu Y. L., Hu C. C., Su W. C., Thermosetting resins with high fractions of freevolume and inherently low dielectric constants. Chem. Commun., 2015, 51, 12760-12763.

    QR CODE