研究生: |
孫宜嶙 Sun, Yi-Lin |
---|---|
論文名稱: |
創新之單模光纖式雷射干涉微影系統設計與開發 Application of a UV Single Mode Fiber as Spatial Filter for a Laser Interference Lithography System |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
宋震國
郭浩中 冉曉雯 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 雷射干涉微影 、紫外線單模光纖 |
外文關鍵詞: | Laser intrerference lithography, UV single mode fiber, Spatial Filter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的是為了能夠提供奈米壓印團隊對壓印模具之需求,製作任何週期與線寬之奈米級週期性一維結構,作為奈米壓印之研究,本實驗室提出利用新式HeCd紫外線雷射干涉微影之機構來製作次波長結構。但為了能夠使雷射干涉微影系統更加穩定、提高良率,許多研究團隊提出以光學機構搭配即時回饋系統,鎖定干涉相位,使干涉光源受環境擾動的因素減至最低,但是主動式回饋系統不僅在機構上十分複雜,開發成本高昂、過程耗時,難以成為研究單位使用之開發設備。本研究提出利用紫外線單模光纖導光系統,以低成本的方式來解決上述問題,減低雷射與環境擾動對於製作奈米級結構產生之影響,藉由穩定光源與縮短光路機構,來減低長時間曝光造成之變因,得以提高本實驗室之雷射干涉微影製程良率。
本文將討論雷射干涉微影之基本原理,藉此了解干涉光相對強度、線性偏振、指向穩定性、同調光源對雷射干涉微影之影響,並檢視使用單模光纖是否能提供上述所需光源,再討論雷射之指向穩定性、空間雜訊、環境穩定性是否能用單模光纖加以改善。此外,利用單模光纖系統,提供本研究得以發展模組化之光學系統,增加實驗彈性。最後,將提出以光纖導光式雷射干涉微影系統配合Lloyd’s mirror製作次波長一維奈米結構和二維結構,以實驗驗證上述理論之可行性。
In order to fabricate silicon grating at nano-scale for nano-imprint lithography, we develop a novel laser interference lithography system to achieve the goal. Our robust Lloyd’s mirror interferometer is designed for fabricating periodic structures with a flexibility of variable line-width and pitch. Even thought, these kinds of system is the most stable design compared to multi-beam interferometer, the stability of Lloyd’s mirror is still an issue due to laser pointing ability. Fringe-locking mechanism is demonstrated to improve stability, but it’s extremely expensive and complex. The main focus of this study is to eliminate the effects of pointing stability of laser by Single Mode Fiber (SMF) which also serves as the spatial filter, beam transport system, and beam expander for a laser interference lithography (LIL) system. This study will discuss the principle of interference lithography and SMF, and then exam the possibility of the theory by experiment.
Now, the fiber could stably preserve the linear polarization of the light with ITE:ITM >100. Exposure times over 10 minutes with expanded beams result in high contrast patterns without any need for fringe-locking. This study will improve the yield rate and the identity of each process in the future.
[1] I. R. Bartlett and P. C. Wildy, "Diffraction Grating Ruling Engine with Piezoelectric Drive," Appl. Opt. 14, 1-3 (1975)
[2] GEORGE R. HARRISON and JAMES E. ARCHER, "Interferometric Calibration of Precision Screws and Control of Ruling Engines," J. Opt. Soc. Am. 41, 495-502 (1951)
[3] Vivian P. Chuang, Joy Y. Cheng, Tim A. Savas, and Caroline A. Ross, “Three-Dimensional Self-Assembly of Spherical Block Copolymer Domains into V-Shaped Grooves”, Nano Lett., 6 (10), pp 2332–2337 (2006)
[4] Brueck, S.R.J., “Optical and Interferometric Lithography - Nanotechnology Enablers” Proceedings Of The IEEE, VOL. 93, NO. 10, (2005)
[5] Xiaowei Guo, Jinglei Du, Yongkang Guo, and Jun Yao, “Large-area surface-plasmon polariton interference lithography”, Optics Letters, Vol. 31, Issue 17, pp. 2613-2615 (2006)
[6] Xiangang Luo, Teruya Ishihara, “Surface plasmon resonant interference nanolithography technique”, Appl. Phys. Lett. 84, 4780 (2004)
[7] Masao Miyake, Ying-Chieh Chen, Paul V. Braun, Pierre Wiltzius, “Fabrication of Three-Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition”, Volume 21, Issue 29, pages 3012–3015, August 7, (2009)
[8] D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, "Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography", Appl. Phys. Lett. 94, 011101 (2009)
[9] Yuankun Lin, Ahmad Harb, Karen Lozano, Di Xu, and K. P. Chen, "Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element", Optics Express, Vol. 17, Issue 19, pp. 16625-16631 (2009)
[10] Jin-Sung Kim, Ki-Dong Lee, Seh-Won Ahn, Sang Hoon Kim, Joo-Do Park, Sung-Eun Lee , Sang-Soo Yoon, “Fabrication of Nanowire Polarizer by Using Nanoimprint Lithography”, Journal of the Korean Physical Society, Vol. 45, pp. S890S892, (2004)
[11] 吳健銓, “奈米結構極化導光照面模組應用於液晶顯示器之光學設計與分析”, 國立清華大學博士論文
[12] Michael E. Walsh, “On the design of lithographic interferometers and their application”, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, (2004)
[13] L. Zeng and L. Li, "Optical mosaic gratings made by consecutive, phase-interlocked, holographic exposures using diffraction from latent fringes," Opt. Lett., 32, 1081-1083 (2007)
[14] H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P. F. Nealey, "Sub-50 nm period patterns with EUV interference lithography", Pages 56-62, Volumes 67-68, (2003)
[15] M. Switkes, T. M. Bloomstein, M. Rothschil, "Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography", Applied Physics Letters, volume 77, number 20, 13 november (2000)
[16] H. H. Solak, C. David, J. Gobrecht, "Multiple-beam interference lithography with electron beam written gratings", American Vacuum Society, J. Vac. Sci. Technology. B 20(6), (2002)
[17] Savas, T. A., Schattenburg, M. L., Carter, J. M., Smith, Henry I., "Large‐area achromatic interferometric lithography for 100 nm period gratings and grids" Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, page 4167-4170, Volume 14, Issue 6, (1996)
[18] Q. Xiea, M.H. Hong, H.L. Tan, G.X. Chen, L.P. Shi and T.C. Chong, "Fabrication of nanostructures with laser interference lithography", Journal of Alloys and Compounds, Pages 261-264, Volume 449, Issues 1-2, 31 January (2008)
[19] Johannes de Boor, Dong Sik Kim, Volker Schmid, "Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd’s interferometer", OPTICS LETTERS,Vol. 35, No. 20, October 15, (2010)
[20] Ikjoo Byun, Joonwon Kim, "Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser", Journal of Micromechanics and Microengineering, 20 (2010)
[21] Douglas S. Hobbs, Lexington, MA, James J. Cowan, “Actively stabilized, single input beam, interference lithography system and method”, Pub. No.:US 2001/0035991 A1 (2001)
[22] J.W. Keen, D.F. Buscher and P.J. Warner, “Numerical Simulations of Pinhole and Single Mode Fibre Spatial Filters for Optical Interferometers”, Volume 326, Issue 4, pages 1381–1386, (2001)
[23] Oswald Wallner, Walter R. Leeb, and Peter J. Winzer, "Minimum length of a single-mode fiber spatial filter", Optical Society of America, Vol. 19, No. 12 December (2002)