研究生: |
王孆慧 Ying-Hui Wang |
---|---|
論文名稱: |
台灣眼鏡蛇心臟毒素引起細胞內鈣離子增加及其生物功能之探討 Taiwan Cobra Venom Induced Intracellular Calcium Increase and Its Biological Implication |
指導教授: |
吳文桂
Wen-Guey Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 嗜中性白血球 、心臟毒素 、台灣眼鏡蛇 、鈣離子 |
外文關鍵詞: | neutrophil, cardiotoxin, Taiwan cobra venom, calcium |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
心臟毒素( CTX )為台灣眼鏡蛇Naja atra蛇毒主要的成分,具有溶血、使神經及肌肉細胞去極化、干擾細胞離子通道平衡以及細胞毒性等特性。當生物體被毒蛇咬傷,被咬部位產生發炎腫脹,進而造成個體死亡,免疫系統是身體防禦的第一線,其中嗜中性白血球具有快速移動到感染部位抵抗病菌的特性,基於此針對心臟毒素是否可調節免疫細胞的功能加以研究,我們發現心臟毒素對嗜中性白血球具有明顯的毒性,並發現心臟毒素A2在不使細胞崩解(lysis)的濃度下會引起嗜中性白血球細胞內的鈣離子濃度增加,此增加的幅度和心臟毒素的濃度成正比,而且和胞外鈣離子的存在與否無關,而細胞內鈣離子濃度的增加通常為細胞死亡的特徵之一,在不造成細胞崩解的情況下,研究心臟毒素所引起細胞內鈣離子濃度增加的機制。就目前已知的細胞內鈣離子訊號傳遞途徑來看,發現心臟毒素A2引起效應和已知的途徑無關,故推測和細胞膜的作用有關。另一方面,從A2的結構來探討,心臟毒素A2及A4兩者只有N端第一個氨基酸序列的差異,CTX A2的N端第一個氨基酸為Leucine (Leu1)。在細胞毒性的比較上,心臟毒素A4的毒性遠大於心臟毒素A2,但是A4並不會引起細胞內鈣離子濃度的增加,因此利用化學修飾法將心臟毒素A2作N端修飾,來探討是否因為N端的差異造成細胞內鈣離子濃度的改變。我們發現去除N端Leu1的CTX A2不會引起細胞內部鈣離子濃度的增加。因此證明了CTX A2的N端第一個氨基酸在調節細胞內部鈣離子的功能上扮演關鍵的角色。
Abstract
Cardiotoxins (CTXs) are the major component in the venom of Naja atra. They cause hemolysis, depolarization of cardiac muscle cells, and contraction of skeletal muscle. They also interrupt of the equilibrium of the ion channels, and exhibit various cytotoxicity effects. When one is bitten by a snake, the wound will induce inflammation and swelling,which will eventually lead to death. The immune system, including leukocytes and lymphocytes, is the most important defense mechanism in the human body. Among these different cells, neutrophils can migrate rapidly to the infected regions and kill the pathogens.In this work, we study the effects of CTX to the dosage of calcium of neutrophils. We found that CTX A2 can induce intracellular increase of calcium but not to the level that would cause the death of the cells. This increase is dependent on the dosage of CTX A2 but independent from extracellular dosage of calcium. We discover that CTX A2 has nothing to do with known signal transduction pathway. As a result, we infer this effect bears directly on the interaction between CTX A2 and the cell membrane. Comparing CTX A2 and CTX A4, we find that there is the only one structural difference in the first N-terminal amino acid sequence.
The first N-terminal amino acid sequence of CTX A2 is Leu. In the view of cytotoxicity, CTX A4 is more toxic than CTX A2. But CTX A4 does not induce intracellular calcium increase in the real time calcium experiment. Therefore, modifying the N-terminal amino acid sequence of CTX A2 may clarify whether the N-terminal amino acid sequence is a possible factor to cause the intracellular calcium increase. We find that the deleted N-terminal Leu1 of CTX A2 dos not induce intracellular calcium increase. Thus we proved that the Leu1 of CTX A2 is the most crucial factor for intracellular calcium increase.
1. Lee, C.Y., and Lee, S.Y. (1979) Cardiovascular effect of snake venoms. Handbook of Experimental Pharmacology, Vol.52, p546-590 ( Lee, C.Y. Ed) Berlin; Springer-Verlag.
2. Changeux, J.P, Kasai M, Lee C.Y.(1970) Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA. Nov;67(3):1241-7
3. Mebs D, Narita K, Iwanaga S, Samejima Y, Lee CY.(1972) Purification, properties and amino acid sequence of -bungarotoxin from the venom of Bungarus multicinctus. Hoppe Seylers Z Physiol Chem.Feb; 353(2):243-62.
4. Gould, R.J, Polokoff, M.A, Friedman, P.A, Huang T.F, Holt, J.C, Cook ,J.J, Niewiarowski, S.(1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. Nov;195(2):168-71.
5. Rossenburg, P. (1988) Phospholipase A2 toxins. In “Snake Toxins in Neurochemistry “p. 27-46. Halsted Press, New York.
6. Hseu, Y.C., Wu, W.G. (1995) Interaction between cardiotoxins and phospholipase A2 in membranes as related by the synergistic effect of their in vitro activity. FASRB J. A1371.
7. Gilquin, B., Roumestand, C., Zinn-Justin, S., Menez, A., and Toma, F. (1993) Refined three-dimensional solution structure of snake cardiotoxin: analysis the side chain organization suggests the existence of a possible phospholipids binding site. Biopolymers 33, 1659-1675.
8. Lin, S.R., Chang, K.L., and Chang,C.C. (1993) Chemical modification of amino groups in cardiotoxin III from Taiwan Cobra (Naja naja atra) venom. Biochem Mol Biol Int. 31, 175-184.
9. Lin,S.R., Chang, L.S. ,and Chang L.K. (2002) Separation and Structure-Function Studies of Taiwan Cobra Cardiotoxins. J.Pro.Chem. vol. 21; (2) 81-86.
10. Jang, J.Y., Kumar, T.K.S., Jayaraman, G., Yang, P.Y.,and Yu,Chin (1997) Comparison of the Hemolytic Activity and Solution Structures of Two Snake Venom Cardiotoxins Analogues Which Only Differ in Their N-Terminal Amino Acid. Biochemistry vol. 36, 14635-14641.
11. Chien, K.Y., Chiang, C.M., Hsen, Y.C., Vyas, A.A., Rule, G.S.,and Wu. W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J Biol Chem. 269(20):14473-83.
12. Chang, C.C., Lee, C.Y. (1966) Electrophysical study of neuromuscular blocking action of cobra neurotoxin. Br. J. Pharmacol. Chemother. 28, 172-181.
13. Hider, R.C., Khader, F. (1982) Biochemical and pharmacological properties of cardiotoxins isolated from cobra venom. Toxicon 13, 437-446.
14. Chen, Y.H., Hu, C.T., Ynag, J.T. (1984) Membrane disintergration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide) Biochem. Int. 8, 329-338.
15. Zaheer A, Noronha SH, Hospattankar AV, Braganca BM. (1975) Inactivation of [Na+-K+]-stimulated ATPase by a cytotoxic protein from cobra venom in relation to its lytic effects on cells.
Biochim Biophys Acta. 394(2):293-303.
16. Bougis, P.E., Khelif, A.A., Rochat, H. (1989) On the inhibition of [Na+,K+]-ATPase by the components of Naja mossambica mossambica venom; Evidence for two distinct rat brain [Na+,K+]-ATPase activities. Biochemistry,28, 3037-3043.
17. Tzeng, W.F. amd Chen, Y.H. (1988) Suppression of snake venom cardiotoxin-induced cardiomyocyte degradation by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95.
18. Fourie, A.M., Meltzer, S., Berman, M.C. and Louw, A.I. (1983) The effect of cardiotoxin on [Ca+,Mg2+]-ATPase of the erythrocyte and sarcoplasmic reticulum. Biochem. Int. 6, 581-591.
19 Hallett, M.B.,ed. (1989) The Neutriphil: Cellular Biochemistry and Physiology. CRC Press, Boca Ration, Fla.
20. Galvani, D.W., Cawley, J.C. (1992) Cytokine Therapy. Cambridge University Press, U.K.
21 Gallin, J.I., Goldstein, I.M.,Snyderman, R. (1988) Inflammation :Basic Principles and Clinical Correlates. Raven Press, Mew York.
22 Rollins B.J. (1997) Chemokines. Blood 90(3):909-28.
23. Mantovani A.(1999) Chemokines: Introduction and overview. Chem Immunol. 72:1-6.
24 Krause, K.H., Campbell, K.P., Welsh, M.j., Lew, D.P. (1990) The calcium signal and neutrophil activation. Clin.Biochem. 23, 159-166.
25 Lew, D.P., Andersson, T., Hed, J., Di Virgilio, F., Pozzan, T. and Stendahl, O. (1985) Ca2+-dependent and Ca2+-independent phagocytosis in human neutrophils. Nature 315, 590-511.
26. Cockcroft, S. (1992) G-protein-regulated phospholipase C,D and A2-mediated signaling in neutrophils. Biochim. Biophys. Acta. 1113, 135-160.
27. Kessel, G.C.R., Roos, D. and Verhoeven, A.J. (1991) fMet-Leu-Phe-induced activation of phospholipase D in human neutrophils. Dependence on changes in cytosolic free Ca2+ concentration and relation with respiratory burst activation. J.Bio.Chem 266, 23152-23156.
28. Glogauer, M., Hartwig, J., And Stossel, T. (2000) Tow pathways through Cdc42 couple the N-formyl receptor to actin nucleation in permeabilized human neutrophils. J. Cell.Bio. 150, 785-796.
29. Arms, K., McPheeters, D. (1975) Sensitivity of cultured embryonic heart cells to cardiotoxin obtained from Naja naja siamensis venom. Toxicon. 13, 333-338.
30. Tzeng, W.F., Chen, Y.H. (1988) Suppression of snake venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca2+ influx or inhibition of non-lysosomal peoteinases. Biochem. J. 256,89-95.
31. Huang, S.J., Kwan, C.Y. (1996) Inhibition by multivalent cations of contraction induced by Chinese cobra venom cardiotoxin in guinea pig papillary muscle. Life Sci. 59.55-60.
32. Huang, S.J., Wu, C.K., Sun, J.J. (1991) Positive inotropic and toxic action of direct lytic factor on isolated working guinea pig hearts. Acta. Pharmacol Sin. 12, 125-131.
33. Sun, J.J., Walker, M.J.A. (1986) Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon 24, 233-245.
34. Wang, H.X., Lau, S.Y., Huang, S.J., Kwan, C.Y., Wong, T.M. (1997) Cobra venom cardiotoxin induces perturbations of cytosolic calcium homeostasis and hypercontracture in adult rat ventricular myocytes. J.Mol.Cell.Cardiol. 29, 2759-2770.
35. Kwan, C.Y., Kwan, T.K., Huang, S.J., (2002) Effect of calcium on the cascular contraction induced by cobra venom cardiotoxin. Clin.Exp.Pharm.Phys. 29, 823-828.
36. Berridge, MJ., Lipp, P. ,and Bootman, MD. (2000) The Versatility and universality of calcium signaling. Nature Rev. Mol. Cell. Biol. 1, 11.
37. Hajnoczky, G., Csordas, G., Madesh, M., Pacher, P. (2000) Control of apoptosis by IP3 and ryanodine receptor driven calcium signals. Cell Calcium. 28:349-63.
38. Szalai, G., Krishnamurthy, R., Hajnoczky, G. (1999) Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 18(22):6349-61.
39. Rizzuto, R., Brini, M., Murgia, M., Pozzan, T. (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744.
40. Jouaville, LS, Ichas, F., Holmuhamedov, EL., Camacho P, Lechleiter JD. (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438.
41. Arnaudeau, S., Kelley, WL., Walsh, JV., Demaurex, N. (2001) Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J.Biol.Chem. 276, 29430.
42. Hajnoczky, G., Robb-Gaspers, LD., Seitz, MB., Thomas, AP. (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415.
43. Scorrano, L., Oakes, SA., Opferman, JT., Cheng, E.H., Sorcinelli, MD., Pozzan, T., Korsmeyer, SJ. (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135.
44. Katanaev, VL. (2001) Signal transduction in neutrophil chemotaxis. Biochemistry (Mosc) 66(4):351-368.
45. Worthen, GS. , Schwab, B. 3rd, Elson, EL., Downey, GP. (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science. 245:183-186.
46. Firtel, RA., Chung, C.Y. (2000) The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays. 22(7):603-615.
47. Rickert, P., Weiner, OD., Wang, F., Bourne, HR., Servant, G. (2000) Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol. 10(11):466-473.
48. Stephens, L., Ellson, C., Hawkins, P. (2002) Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell. Biol. 14(2):203-213.
49. Panaro, MA. , Mitolo, V. (1999) Cellular responses to FMLP challenging: a mini-review. Immunopharmacol Immunotoxicol. 21(3):397-419.
50. Arai ,H., Koizumi, H., Aoki, J., Inoue, K. (2002) Platelet-activating factor acetylhydrolase (PAF-AH). J. Biochem (Tokyo). 131(5):635-640.
51. Crooks, SW. , Stockley, RA. (1998) Leukotriene B4. Int J Biochem Cell Biol. 30(2):173-178.
52. Gerard, C., Gerard, NP. (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol. 12:775-808.
53. Baggiolini, M. (1998) Chemokines and leukocyte traffic. Nature. 392:565-568.
54. Menegazzi, R., Cramer, R., Patriarca, P., Scheurich, P., Dri, P. (1994) Evidence that tumor necrosis factor alpha (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood. 84(1):287-293.
55. Thelen, M., Uguccioni, M., Bosiger, J. (1995) PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochem Biophys Res Commun. 217(3):1255-62.
56. Oldenborg, PA., Sehlin, J. (1998) Insulin-stimulated chemokinesis in normal human neutrophils is dependent on D-glucose concentration and sensitive to inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase. J Leukoc Biol. 63(2):203-208.
57. Reibman, J., Meixler, S., Lee, T.C., Gold, LI., Cronstein, BN., Haines, KA., Kolasinski, SL., Weissmann, G.(1991) Transforming growth factor beta 1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc Natl Acad Sci U S A. 88(15):6805-09.
58. Hannigan, M., Zhan, L., Ai, Y., Huang, C.K. (1998) The role of p38 MAP kinase in TGF-beta1-induced signal transduction in human neutrophils. Biochem Biophys Res Commun. 246(1):55-8.
59. Lew, PD., Wollheim, CB., Waldvogel, FA., Pozzan, T. (1984) Modulation of cytosolic-free calcium transients by changes in intracellular calcium-buffering capacity: correlation with exocytosis and O2-production in human neutrophils. J Cell Biol. 99:1212-20.
60. Al-Mohanna, FA., Pettit, EJ., Hallett, MB. (1997) Does actin polymerization status modulate Ca2+ storage in human neutrophils release and coalescence of Ca2+ stores by cytochalasins. Exp Cell Res. 234(2):379-387.
61. Laffafian, I., Hallett, MB. (1995) Does cytosolic free Ca2+ signal neutrophil chemotaxis in response to formylated chemotactic peptide? J Cell Sci. 108:3199-3205.
62. Pettit, EJ., Hallett, MB. (1998) Two distinct Ca2+ storage and release sites in human neutrophils. J Leukoc Biol. 63(2):225-232.
63. Volpe, P., Krause, KH., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J., Lew, DP. (1988) "Calciosome," a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci U S A. 85:1091-5.
64. Sawyer, DW., Sullivan, JA., Mandell, GL. (1985) Intracellular free calcium localization in neutrophils during phagocytosis. Science.230: 663-666.
65. Kiehart, DP. (1981) Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system. J Cell Biol. 88(3):604-17.
66. Silver, RB. , Cole, RD., Cande, WZ.. (1980) Isolation of mitotic apparatus containing vesicles with calcium sequestration activity. Cell. 19(2):505-16.
67. Bezprozvanny, I., Watras, J., Ehrlich, BE.. (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 351:751-754.
68. Dufton, MJ., Hider, RC., in Snake Toxin pp.259-302, Pergamon Press, New York.
69. Jang, J.Y., Krishnaswamy, T., Kumar, S., Jayaraman, G., Yang P.W., Yu, C. (1997) Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry 36, 14635-14641.
70. Desormeaux, A., Laroche, G., Bougis, PE., Pezolet, M. (1992) Characterization by infrared spectroscopy of the interaction of a cardiotoxin with phosphatidic acid and with binary mixtures of phosphatidic acid and phosphatidylcholine. Biochemistry. 31:12173-82.
71. Wu, C.Y., Chen, W.C., Ho, C.L., Chen, S.T., Wang, K.T.. (1997) The role of the N-terminal leucine residue in snake venom cardiotoxin II (Naja naja atra). Biochem Biophys Res Commun. 233(3):713-716.
72. 江建民 (1996) 酸性胺基酸在心臟毒素結構及膜活性功能上之角色 清華大學博士論文。
73. Arne, Boyum. (1984) Separation of lymphocyte, granulocute, and monocytes from blood using iodinated density gradient media. Methods in Emzymology. 108.88-102.
74. Alvaro ,L. ,Bertho , Marta, A., Santiago, SÈrgio, G. Coutinho (2000) Flow Cytometry in the Study of Cell Death. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 95(3): 429-433,
75. 楊彩雲 (2001) 心臟毒素A4導致心肌細胞凋亡的研究 清華大學碩士論文。
76. Hallett, MB., Hodges, R., Cadman, M., Blanchfield, H., Dewitt, S., Pettit, EJ., Laffafian, I., Davies, EV. (1999) Techniques for measuring and manipulating free Ca2+ in the cytosol and organelles of neutrophils.
J Immunol Methods. 232(1-2):77-88.
77. http://www.probes.com
78. Inesi, G., Sagara, Y. (1992) Thapsigargin, a high affinity and global inhibitor of intracellular Ca2+ transport ATPases. Arch Biochem Biophys. 298(2):313-7.
79. Treiman, M., Caspersen, C., Christensen, SB. (1998) A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. Trends Pharmacol Sci. 19(4):131-135.
80. Rizzuto, R., Bernardi, P., Pozzan, T. (2000) Mitochondria as all-round players of the calcium game. J Physiol. 529:37-47.
81. Lawrie, AM., Rizzuto, R., Pozzan, T., Simpson, AW. (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J. Biol Chem. 271(18):10753-10759.
82. Park, KS., Jo, I., Pak, K., Bae, SW., Rhim, H., Suh, SH., Park, J., Zhu, H., So, I., Kim ,KW. (2002) FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. Pflugers Arch. 443(3):344-352.
83. Powis, G., Bonjouklian, R., Berggren, MM., Gallegos, A., Abraham, R., Ashendel, C., Zalkow, L., Matter, WF., Dodge, J., Grindey, G., et al. (1994) Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 54(9):2419-2423.
84. Rosales, C., Brown, EJ. (1992) Calcium channel blockers nifedipine and diltiazem inhibit Ca2+ release from intracellular stores in neutrophils.
J Biol Chem. 267(3):1443-1448.
85. Pizzo, P., Giurisato, E., Tassi, M., Benedetti, A., Pozzan, T., Viola, A. (2002) Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur J Immunol. 32(11):3082-3091.
86. 徐麗道 (2001) 非洲眼鏡蛇心臟毒蛋白對嗜中性白血球活性影響之研究 清華大學碩士論文。