簡易檢索 / 詳目顯示

研究生: 杜宇恆
Du, Yu-Heng
論文名稱: 適用於64x64太赫茲單像素壓縮感測成像系統之張量通道等化技術與影像重建
Tensor-Based Channel Equalization and Reconstruction Design for 64x64 Terahertz Single-Pixel Compressive Sensing Imaging Systems
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 蔡佩芸
Tsai, Pei-Yun
沈中安
Shen, Chung-An
陳坤志
Chen, Kun-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 92
中文關鍵詞: 太赫茲成像單像素成像壓縮感測訊號還原通道等化
外文關鍵詞: THz imaging system, Single-pixel imaging, Compressive sensing, Signal reconstruction, Channel equalization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太赫茲輻射由於其許多獨特的特性,近年來在許多研究領域引起了極大的關注。太赫茲可以穿透多種非導電材料和許多種分子,從而在太赫茲波段顯示出它們獨特的光譜特性。此外與X射線不同,太赫茲波的低功率輻射不會對生物組織產生危害。因此太赫茲技術在無損檢測、安檢、光譜學、生物信息學、斷層掃描等諸多研究領域的發展中備受期待。然而太赫茲輻射的產生器和探測器仍然非常昂貴,導致構建具有成本效益的太赫茲成像系統面臨許多挑戰。單像素壓縮感測成像被認為是實現太赫茲成像系統的低成本可靠解決方案。 單像素壓縮感測成像僅使用一個感測器進行採樣。通過在系統中使用不同的空間遮罩,可以同時對待測物的信息進行採樣和壓縮,因此能夠使用低於奈奎斯特定理所要求的採樣率進行訊號採樣與還原。

    然而,單像素壓縮感測成像需要額外的重建算法來從採樣信號中恢復原始圖像。這導致高解析度成像應用的計算複雜度爆炸式增長。除此之外,使用於太赫茲輻射的單像素成像系統會面臨許多光學和物理元件的不理想效應。這些不理想效應會導致重建算法性能不佳甚至導致重建失敗。為了減少傳統壓縮感知重建算法中的矩陣維度和計算負擔,本研究在太赫茲單像素成像系統中採用了張量壓縮感知框架。本研究還提出了一種通道等化演算法,通過使用克羅內克乘積分解和基於線性回歸的測量值修改,以消除不理想的太赫茲通道對重建圖像的影響。另一方面,基於投影的原子選擇策略被用於基於張量的重建算法,以進一步提高重建性能。 模擬實驗利用均方誤差(MSE)和結構相似性(SSIM)的性能指標來證明圖像品質在重建性能方面的改進。在本研究中,通道模型和模擬是針對64 × 64的圖像進行的。我們會交互比較不同的通道等化方法和重建演算法,通過MSE、SSIM、與視覺效果來比較不同方法對圖像重建性能的影響。


    Terahertz (THz) radiation has attracted great research attention in recent years due to its many exciting properties. Terahertz can penetrate several non-conductive materials and plenty of molecules to show their unique spectral characteristics in the terahertz band. Besides, unlike X-ray, terahertz wave is harmless to biological tissues because of its low-power radiation. Therefore, terahertz is highly anticipated in the development of many research fields, such as nondestructive evaluation, security screening, spectroscopy, bioinformatics, and tomography. However, the source generators and the detectors for terahertz are still extremely expensive, resulting in many challenges in constructing a cost-efficient terahertz imaging system. Single-pixel compressive sensing imaging is regarded as a low-cost reliable solution to implement the terahertz imaging system. Single-pixel imaging technology utilizes only one detector for sampling. By the use of spatial masks in the system, the information of the object can be sampled and compressed at the same time, enabling a lower sampling rate compared to what the Nyquist–Shannon theorem required.

    However, single-pixel compressive sensing imaging requires an extra reconstruction algorithm to recover the original image from the sampled signals. This can lead to explosive growth in computational burden for high-resolution imaging applications. In addition, the single-pixel imaging system suffers from several undesirable effects on optical and physical components, e.g., Gaussian beam propagation and modulation depth effect. These non-ideal effects always lead to the poor performance or even failure of the reconstruction algorithm. To reduce the matrix dimension and the computational burden in the traditional compressive sensing reconstruction algorithms, this study adopted the tensor compressive sensing framework, which was originally proposed for image compression and restoration, in the terahertz single-pixel imaging systems. This work also proposes a channel equalization algorithm by introducing the nearest Kronecker product decomposition (NKP) and measurements modification based on off-line linear regression (LR) to eliminate the non-ideal THz channel effects on the reconstructed image. On the other hand, the projection-based atom selection strategy was used in the tensor-based reconstruction algorithm to further improve the reconstruction performance. The simulation experiments utilized the performance metrics of mean square error (MSE) and structural similarity (SSIM) to demonstrate image quality improvement in reconstruction performance. In this study, the channel model and the simulation were carried out for 64 × 64 images. Different channel equalization processes and reconstruction algorithms are compared interactively, and the impact of different methods on image reconstruction performance is compared through MSE, SSIM, and visual impression.

    1 Introduction 1 1.1 Terahertz Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scanning Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Raster Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Single-Pixel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Compressive Sensing and Sparse Signal Reconstruction Algorithms . . . . 6 1.3.1 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Signal Reconstruction Agorithms . . . . . . . . . . . . . . . . . . 9 1.4 Discussion and Research Motivation . . . . . . . . . . . . . . . . . . . . . 11 2 Terahertz Single-Pixel Imaging System 13 2.1 Terahertz Single-Pixel Imaging System . . . . . . . . . . . . . . . . . . . 14 2.1.1 Terahertz Spatial Modulation Based on Bronzing Spatial Mask . . 14 2.1.2 Terahertz Spatial Modulation Based on Free Carriers Modulator . 15 2.2 1D Compressive Sensing Model for Single-Pixel Imaging . . . . . . . . . 17 2.3 2D Tensor Compressive Sensing Model for Single-Pixel Imaging . . . . . 20 2.4 Tensor-Based Image Reconstruction Algorithms . . . . . . . . . . . . . . 23 2.4.1 Generalized Tensor Compressive Sensing with Parallelizable Re- covery (GTCS-P) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2 2D Compressive Sensing by Power Method for Singular Value De- composition (2DCS-PSVD) . . . . . . . . . . . . . . . . . . . . . 25 3 Channel Model and Equalization for Terahertz 1D Compressive Sens- ing Imaging System 29 3.1 Channel Model of Terahertz Single-Pixel Imaging System . . . . . . . . . 29 3.1.1 Gaussian Beam Propagation . . . . . . . . . . . . . . . . . . . . . 30 3.1.2 Modulation Depth Effect . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Channel Equalization for Terahertz Imaging System . . . . . . . . . . . . 38 4 Tensor-Based Channel Equalization for Terahertz Imaging System 41 4.1 Nearest Kronecker Product Decomposition . . . . . . . . . . . . . . . . . 44 4.2 Data Observation Model and Off-Line Linear Regression for Measurement Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Projection-Based Atom Selection for Noise Robust 2DCS-PSVD . . . . . 53 5 Simulation Results of Tensor-based Chanel Equalization 57 5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 Spatial Mask Based on Metallic Reflections . . . . . . . . . . . . . 57 5.1.2 Spatial Mask Based on All-Optical Modulators . . . . . . . . . . . 58 5.1.3 Training Pattern and Test Pattern for Simulation . . . . . . . . . 59 5.2 Performance Evaluation Metrics for Reconstruction . . . . . . . . . . . . 60 5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.1 Metallic-Based Terahertz Single-Pixel Imaging System . . . . . . 64 5.3.2 Carrier-Based Terahertz Single-Pixel Imaging System . . . . . . . 72 6 Conclusion and Future Work 83 References 85

    [1]P.H. Siegel. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50(3):910–928, 2002.
    [2]Toshihiko Kiwa, Masayoshi Tonouchi, Masatsugu Yamashita, and Kodo Kawase. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Optics letters, 28(21):2058–2060, 2003.
    [3]John F Federici, Brian Schulkin, Feng Huang, Dale Gary, Robert Barat, Fil-ipe Oliveira, and David Zimdars. Thz imaging and sensing for security appli-cations—explosives, weapons and drugs. Semiconductor Science and Technology, 20(7):S266, 2005.
    [4]Pu Wang, Haoyu Fu, Toshiaki Koike-Akino, and Philip V Orlik. Multi-layer tera-hertz imaging of non-overlapping contents. In 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 652–656. IEEE, 2018.
    [5]Donald D Arnone, Craig M Ciesla, Alessandra Corchia, S Egusa, Michael Pepper, J Martyn Chamberlain, C Bezant, Edmund H Linfield, R Clothier, and N Khammo. Applications of terahertz (thz) technology to medical imaging. In Terahertz Spec-troscopy and Applications II, volume 3828, pages 209–219. SPIE, 1999.
    [6]Zachary D Taylor, Rahul S Singh, David B Bennett, Priyamvada Tewari, Colin P Kealey, Neha Bajwa, Martin O Culjat, Alexander Stojadinovic, Hua Lee, Jean-Pierre Hubschman, et al. Thz medical imaging: in vivo hydration sensing. IEEE transactions on terahertz science and technology, 1(1):201–219, 2011.
    [7]Kirill I Zaytsev, Nikita V Chernomyrdin, Konstantin G Kudrin, Arseniy A Gav-dush, Pavel A Nosov, Stanislav O Yurchenko, and Igor V Reshetov. In vivo tera-hertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi. In Journal of Physics: Conference Series, volume 735, page 012076. IOP Publishing, 2016.
    [8]P Uhd Jepsen, David G Cooke, and Martin Koch. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 5(1):124–166, 2011.
    [9]Alexander I McIntosh, Bin Yang, Stephen M Goldup, Michael Watkinson, and Robert S Donnan. Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chemical Society Reviews, 41(6):2072–2082, 2012.
    [10]Liu Yang, Tengxiao Guo, Xu Zhang, Shuya Cao, and Xuequan Ding. Toxic chemical compound detection by terahertz spectroscopy: A review. Reviews in Analytical Chemistry, 37(3), 2018.
    [11]Ashish Y Pawar, Deepak D Sonawane, Kiran B Erande, and Deelip V Derle. Ter-ahertz technology and its applications. Drug invention today, 5(2):157–163, 2013.
    [12]Marco F Duarte, Mark A Davenport, Dharmpal Takhar, Jason N Laska, Ting Sun, Kevin F Kelly, and Richard G Baraniuk. Single-pixel imaging via compressive sampling. IEEE signal processing magazine, 25(2):83–91, 2008.
    [13]Stuart A Taylor et al. Ccd and cmos imaging array technologies: technology review. UK: Xerox Research Centre Europe, pages 1–14, 1998.
    [14]Abbas El Gamal and Helmy Eltoukhy. Cmos image sensors. IEEE Circuits and Devices Magazine, 21(3):6–20, 2005.
    [15]AD Stiff-Roberts, S Chakrabarti, S Pradhan, Boaz Kochman, and P Bhattacharya. Raster-scan imaging with normal-incidence, midinfrared inas/gaas quantum dot infrared photodetectors. Applied physics letters, 80(18):3265–3267, 2002.
    [16]Weng-tai Su, Yi-Chun Hung, Ta-Hsuan Chao, Po-Jen Yu, Shang-Hua Yang, and Chia-Wen Lin. Seeing through a black box: Toward high-quality terahertz to-mographicimaging via multi-scale spatio-spectral image fusion. arXiv preprint arXiv:2103.16932, 2021.
    [17]Matthew Edgar, Graham M Gibson, Richard W Bowman, Baoqing Sun, Neal Rad-well, Kevin J Mitchell, Stephen S Welsh, Miles J Padgett, et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Scientific reports, 5(1):1–8, 2015.
    [18]Neal Radwell, Kevin J Mitchell, Graham M Gibson, Matthew P Edgar, Richard Bowman, and Miles J Padgett. Single-pixel infrared and visible microscope. Optica, 1(5):285–289, 2014.
    [19]David Shrekenhamer, Claire M Watts, and Willie J Padilla. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Optics ex-press, 21(10):12507–12518, 2013.
    [20]Rayko Ivanov Stantchev, Xiao Yu, Thierry Blu, and Emma Pickwell-MacPherson. Real-time terahertz imaging with a single-pixel detector. Nature communications, 11(1):1–8, 2020.
    [21]Dharmpal Takhar, Jason N Laska, Michael B Wakin, Marco F Duarte, Dror Baron, Shriram Sarvotham, Kevin F Kelly, and Richard G Baraniuk. A new compressive imaging camera architecture using optical-domain compression. In Computational Imaging IV, volume 6065, pages 43–52. SPIE, 2006.
    [22]Abdul J Jerri. The shannon sampling theorem—its various extensions and appli-cations: A tutorial review. Proceedings of the IEEE, 65(11):1565–1596, 1977.
    [23]Emmanuel Candes, Justin Romberg, and Terence Tao. Stable signal recovery from incomplete and inaccurate measurements, 2005.
    [24]Emmanuel J Cand`es, Justin Romberg, and Terence Tao. Robust uncertainty prin-ciples: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on information theory, 52(2):489–509, 2006.
    [25]Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A sim-ple proof of the restricted isometry property for random matrices. Constructive Approximation, 28(3):253–263, 2008.
    [26]Dror Baron, Michael B Wakin, Marco F Duarte, Shriram Sarvotham, and Richard G Baraniuk. Distributed compressed sensing. 2005.
    [27]Jian Wang, Seokbeop Kwon, and Byonghyo Shim. Generalized orthogonal matching pursuit. IEEE Transactions on signal processing, 60(12):6202–6216, 2012.
    [28]Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, 53(12):4655–4666, 2007.
    [29]David L Donoho, Yaakov Tsaig, Iddo Drori, and Jean-Luc Starck. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE transactions on Information Theory, 58(2):1094–1121, 2012.
    [30]Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from in-complete and inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321, 2009.
    [31]Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE transactions on Information Theory, 55(5):2230–2249, 2009.
    [32]Thong T Do, Lu Gan, Nam Nguyen, and Trac D Tran. Sparsity adaptive match-ing pursuit algorithm for practical compressed sensing. In 2008 42nd Asilomar conference on signals, systems and computers, pages 581–587. IEEE, 2008.
    [33]Elaine Crespo Marques, Nilson Maciel, Lirida Naviner, Hao Cai, and Jun Yang. A review of sparse recovery algorithms. IEEE access, 7:1300–1322, 2018.
    [34]Ljubiˇsa Stankovi´c, Ervin Sejdi´c, Srdjan Stankovi´c, Miloˇs Dakovi´c, and Irena Orovi´c. A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits, Systems, and Signal Processing, 38(3):1206–1263, 2019.
    [35]Wai Lam Chan, Kriti Charan, Dharmpal Takhar, Kevin F Kelly, Richard G Bara-niuk, and Daniel M Mittleman. A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 93(12):121105, 2008.
    [36]Anton Travinsky, Dmitry Vorobiev, Zoran Ninkov, Alan Raisanen, Manuel A Qui-jada, Stephen A Smee, Jonathan A Pellish, Tim Schwartz, Massimo Robberto, Sara Heap, et al. Evaluation of digital micromirror devices for use in space-based multi-object spectrometer application. Journal of Astronomical Telescopes, Instruments, and Systems, 3(3):035003, 2017.
    [37]Akash Kannegulla, Md Itrat Bin Shams, Lei Liu, and Li-Jing Cheng. Photo-induced spatial modulation of thz waves: opportunities and limitations. Optics express, 23(25):32098–32112, 2015.
    [38]Ron Rubinstein, Alfred M Bruckstein, and Michael Elad. Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6):1045–1057, 2010.
    [39]Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-Won Lee, and Terrence J Sejnowski. Dictionary learning algorithms for sparse representation. Neural computation, 15(2):349–396, 2003.
    [40]Nicholas D Sidiropoulos and Anastasios Kyrillidis. Multi-way compressed sensing for sparse low-rank tensors. IEEE Signal Processing Letters, 19(11):757–760, 2012.
    [41]Cesar F Caiafa and Andrzej Cichocki. Computing sparse representations of mul-tidimensional signals using kronecker bases. Neural computation, 25(1):186–220, 2013.
    [42]Shmuel Friedland, Qun Li, and Dan Schonfeld. Compressive sensing of sparse tensors. IEEE Transactions on Image Processing, 23(10):4438–4447, 2014.
    [43]Wei-Chieh Wang. 2d compressive sensing algorithm and architecture design for terahertz single-pixel imaging systems. Master’s thesis, National Tsing Hua Uni-versity, Taiwan, 2021.
    [44]Wei-Chieh Wang, Yi-Chun Hung, Yu-Heng Du, Shang-Hua Yang, and Yuan-Hao Huang. Fpga-based tensor compressive sensing reconstruction processor for tera-hertz single-pixel imaging systems. IEEE Open Journal of Circuits and Systems, 3:336–350, 2022.
    [45]Chun-Hun Wu, Chin-Yi Liu, and Pei-Yun Tsai. Design of an svd engine for 8× 8 mimo precoding systems. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE, 2017.
    [46]Aidin Shiri and Ghader Karimian Khosroshahi. An fpga implementation of singular value decomposition. In 2019 27th Iranian Conference on Electrical Engineering (ICEE), pages 416–422. IEEE, 2019.
    [47]Yu Wang, Jeong-Jun Lee, Yu Ding, and Peng Li. A scalable fpga engine for parallel acceleration of singular value decomposition. In 2020 21st International Symposium on Quality Electronic Design (ISQED), pages 370–376. IEEE, 2020.
    [48]AH Bentbib and A Kanber. Block power method for svd decomposition. Analele Sti-intifice ale Universitatii Ovidius Constanta, Seria Matematica, 23(2):45–58, 2015.
    [49]Li-Hsuan Chiu. High-quality terahertz compressed sensing image reconstruction by channel equalization. Master’s thesis, National Tsing Hua University, Taiwan, 2021.
    [50]Charles F Van Loan and Nikos Pitsianis. Approximation with kronecker products. In Linear algebra for large scale and real-time applications, pages 293–314. Springer, 1993.
    [51]Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and applied mathematics, 123(1-2):85–100, 2000.
    [52]G. Kalatozishvili L. Chaladze. Linnaeus 5 dataset for machine learning. 2017.
    [53]Jort Florent Gemmeke, Hugo Van Hamme, Bert Cranen, and Lou Boves. Compres-sive sensing for missing data imputation in noise robust speech recognition. IEEE Journal of selected topics in Signal Processing, 4(2):272–287, 2010.
    [54]Hansheng Wang, Guodong Li, and Guohua Jiang. Robust regression shrinkage and consistent variable selection through the lad-lasso. Journal of Business & Economic Statistics, 25(3):347–355, 2007.
    [55]Yulong Wang, Yuan Yan Tang, Cuiming Zou, Luoqing Li, and Hong Chen. Modal regression based greedy algorithm for robust sparse signal recovery, clustering and classification. Neurocomputing, 372:73–83, 2020.
    [56]Rafael E Carrillo, Ana B Ramirez, Gonzalo R Arce, Kenneth E Barner, and Brian M Sadler. Robust compressive sensing of sparse signals: a review. EURASIP Journal on Advances in Signal Processing, 2016(1):1–17, 2016.
    [57]Saikat Chatterjee, Dennis Sundman, Mikko Vehkapera, and Mikael Skoglund. Projection-based and look-ahead strategies for atom selection. IEEE Transactions on Signal Processing, 60(2):634–647, 2011.
    [58]Jin-Wei Jhang and Yuan-Hao Huang. A high-snr projection-based atom selection omp processor for compressive sensing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(12):3477–3488, 2016.
    [59]Rongbin She, Wenquan Liu, Yuanfu Lu, Zhisheng Zhou, and Guangyuan Li. Fourier single-pixel imaging in the terahertz regime. Applied Physics Letters, 115(2):021101, 2019.
    [60]Adam Vall´es, Jiahuan He, Seigo Ohno, Takashige Omatsu, and Katsuhiko Miyamoto. Broadband high-resolution terahertz single-pixel imaging. Optics Ex-press, 28(20):28868–28881, 2020.
    [61]Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.
    [62]Qi-Ye Wen, Wei Tian, Qi Mao, Zhi Chen, Wei-Wei Liu, Qing-Hui Yang, Matthew Sanderson, and Huai-Wu Zhang. Graphene based all-optical spatial terahertz mod-ulator. Scientific reports, 4(1):1–5, 2014.
    [63]Ting He, Bo Zhang, Jingling Shen, Mengdi Zang, Tianji Chen, Yufeng Hu, and Yanbing Hou. High-efficiency thz modulator based on phthalocyanine-compound organic films. Applied Physics Letters, 106(5):13 1, 2015.
    [64]Prashanth Gopalan and Berardi Sensale-Rodriguez. 2d materials for terahertz mod-ulation. Advanced Optical Materials, 8(3):1900550, 2020.

    QR CODE