簡易檢索 / 詳目顯示

研究生: 伍政宇
Wu, Cheng-Yu
論文名稱: 利用產氧微米粒子克服缺氧造成免疫抑制之腫瘤微環境以增強腫瘤免疫治療之療效
An oxygen producing micro-particle for overcoming hypoxia-driven immunosuppression in tumor microenvironment and enhancing cancer immunotherapy
指導教授: 宋信文
Sung, Hsin-Wen
口試委員: 王先知
Wang, Hsien-Chih
楊重熙
Yang, Chung-Hsi
邱信程
Chou, Hsin-Cheng
王麗芳
Wang, Li-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 35
中文關鍵詞: 腫瘤缺氧氧氣載體釋放腫瘤微環境
外文關鍵詞: tumor hypoxia, oxygen-producing particles, cancer immunotherapy
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤的生長速度非常快,有時血管的新生速度會跟不上腫瘤體積的增加,血液便沒辦法充分流至腫瘤內部,進行有效的氣體交換,使得腫瘤內部容易產生缺氧的區塊。而缺氧區的癌細胞具有極高的變異性,能透過各種機制來調整、隱蔽自己,使其難以被免疫細胞所察覺,或阻斷由胞殺性T細胞所引發的細胞溶解路徑,以增加癌細胞本身的存活能力,這也增加了要徹底根除癌細胞 的難度。
    現今免疫治療多採用施打單一抗體的方式,用以針對特定抗原誘發強烈免疫反應。而隨著醫療的發展,近來在免疫治療的研究上,多數都採取結合多種抗原、佐劑一同施打的方式,同時加入anti PD-1等免疫檢查點抑制劑的施打,以防止腫瘤細胞自我隱蔽的機制。在本研究中,我們將過氧化鈣和奈米鉑金屬包覆於具有疏水性的聚乳酸-甘醇酸(poly lactic-co-glycolic acid, PLGA)載體內,利用過氧化鈣與水溶液反應產生過氧化氫,再透由奈米鉑的催化能力使過氧化氫轉換為氧氣路徑,以期透過這個載體產生氧氣。載體所提供的氧氣,可供給在缺氧環境中的細胞足夠的氧氣,改善癌細胞因缺氧而產生的免疫抑制。我們也期望在動物實驗中,將載體打入腫瘤,能藉由其產生的氧氣改善腫瘤內部的缺氧環境,進而去減緩缺氧區塊對免疫細胞的排斥。


    In the absence of adequate oxygen, cancer cells that are grown in hypoxic solid tumors developed resistance to lymphocyte-mediated lysis, thus reducing the effectiveness of cancer immunotherapy. We therefore hypothesize that regional oxygen treatment by an injectable oxygen-producing microparticle system may reverse tumor hypoxia and enhance the efficacy of cancer immunotherapy in a highly site-specific manner, without raising systemic oxygen levels. The oxygen-producing microparticle system are prepared by encapsulating calcium peroxide (CaO2) and platinum nanoparticles (Pt NPs) into poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles (MPs) using a microfluidic device, and then are harvested by filtration and then air-dried. Under physiological condition, the CaO2 that is encapsulated in the PLGA MPs reacts with the interstitial medium to produce calcium hydroxide [Ca(OH)2] and hydrogen peroxide (H2O2). The Pt NPs encapsulated in the PLGA MPs then catalyzes the decomposition of H2O2 to oxygen and water, ultimately allaying the hypoxia-induced immune suppression. The as-prepared microspheres are capable of sustainably release oxygen over 16 hours. In the in vitro study, the oxygen-producing microparticle system can reduce the level of HIF- protein in CT26 colon carcinoma under low oxygen tension (1% O2), resulting in the inhibition of hypoxia-induced autophagy, which can promote tumor cell resistance to lymphocyte-mediated lysis. These results suggest that the oxygen-producing microparticle system that were prepared herein may serve as an in situ oxygen-generating reservoir in relieving hypoxia in solid tumors

    內容 摘要 I Abstract II 目錄 III 圖目錄 V 第一章 緒論 1 1.1癌症的免疫治療 1 1.2腫瘤內缺氧造成免疫抑制之腫瘤微環境 2 1.3 奈米金屬粒子的仿生物酵素活性 7 1.4 產氧載體的發展 9 1.5 研究目的與實驗設計 9 1.6 實驗流程設計圖 12 第二章 13 實驗材料與方法 13 2.1 實驗材料 13 2.2 奈米金屬粒子的過氧化氫酶活性測試 13 2.3 CaO2-Pt-PLGA載體的製備 14 2.4 CaO2-Pt-PLGA載體物化性分析 15 2.5 CaO2-Pt-PLGA載體產氧分析 16 2.6 CaO2-Pt-PLGA載體毒性測試 16 2.7細胞培養 17 2.8細胞回氧測試 17 2.9細胞自噬體檢測 18 2.10腫瘤模式的建立 18 2.11生物相容性探討 19 第三章 19 實驗結果與討論 19 3.1 奈米金屬粒子的過氧化氫酶活性 19 3.2 CaO2-Pt-PLGA載體的型態 21 3.3 CaO2-Pt-PLGA載體的氧氣釋放曲線與分析 22 3.4 CaO2-Pt-PLGA載體的細胞毒性 25 3.5 細胞缺氧機制探討及改善 28 3.6 動物模型建立及載體毒性探討 31 第四章 32 結果與未來展望 32 實驗結果討論 : 32 短期目標 : 33 遠程規劃 : 33 參考文獻 34

    參考文獻
    1. Moen, I. and L.E. Stuhr, Hyperbaric oxygen therapy and cancer--a review. Target Oncol, 2012. 7(4): p. 233-42.
    2. Malda, J., T.J. Klein, and Z. Upton, The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng, 2007. 13(9): p. 2153-62.
    3. Stephen M Hatfield1 and Michail Sitkovsky1, Oxygenation to improve cancer vaccines, adoptive cell transfer and blockade of immunological negative regulators. 2015: p. e-1052934-1~-3.
    4. Noman, M.Z., et al., Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol, 2015. 309(9): p. C569-79.
    5. Sitkovsky, M. and D. Lukashev, Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol, 2005. 5(9): p. 712-21.
    6. Sitkovsky, M.V., et al., Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res, 2014. 2(7): p. 598-605.
    7. Ohta, A., et al., Hypoxia-induced and A2A adenosine receptor-independent T-cell suppression is short lived and easily reversible. Int Immunol, 2014. 26(2): p. 83-91.
    8. Noman, M.Z., et al., Blocking Hypoxia-Induced Autophagy in Tumors Restores Cytotoxic T-Cell Activity and Promotes Regression. Cancer Research, 2011. 71(18): p. 5976.
    9. Baginska, J., et al., Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proceedings of the National Academy of Sciences, 2013. 110(43): p. 17450.
    10. Hatfield, S.M., et al., Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med, 2015. 7(277): p. 277ra30.
    11. Liu, C.P., et al., Self-Supplying O2 through the Catalase-Like Activity of Gold Nanoclusters for Photodynamic Therapy against Hypoxic Cancer Cells. Small, 2017. 13(26).
    12. Huang, C.-C., et al., An Implantable Depot That Can Generate Oxygen in Situ for Overcoming Hypoxia-Induced Resistance to Anticancer Drugs in Chemotherapy. Journal of the American Chemical Society, 2016. 138(16): p. 5222-5225.
    13. Chen, Z., et al., Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012. 6(5): p. 4001-12.
    14. Huynh, M., D.K. Bediako, and D.G. Nocera, A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc, 2014. 136(16): p. 6002-10.
    15. Li, J., et al., Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials, 2015. 48: p. 37-44.
    16. Liu, Y., pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Royal society of chemistry, 2014: p. 11904-11910.
    17. Seekell, R.P., et al., Oxygen delivery using engineered microparticles. Proc Natl Acad Sci U S A, 2016. 113(44): p. 12380-12385.
    18. Pedraza, E., et al., Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4245-50.
    19. Harrison, B.S., et al., Oxygen producing biomaterials for tissue regeneration. Biomaterials, 2007. 28(31): p. 4628-34.
    20. He, W., et al., Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials, 2013. 34(3): p. 765-773.
    21. Huang, C.C., et al., Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials, 2012. 33(16): p. 4069-77.
    22. https://www.thermofisher.com/order/catalog/product/A22188.

    QR CODE