研究生: |
凃炯宇 TU, JIONG-YU |
---|---|
論文名稱: |
潛在失誤因子分析方法的建立與應用-以飛航維護作業為例 Establishment and Application of a Latent Error Factor Analysis Method for Aviation Maintenance Task |
指導教授: |
黃雪玲
Hwang, Sheue-Ling |
口試委員: |
林雅俐
游繁章 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 潛在失誤 、飛航維修作業 、根本原因分析法 、人為因素分析與分類系統 |
外文關鍵詞: | Latent Error, Aviation Maintenance Task, Root Cause Analysis, HFACS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
造成意外事件的原因,往往是一連串的失誤所導致。所以在進行事件原因的追溯時,若只檢討直接明顯的失誤而未全面追究間接潛在的風險,則類似的意外仍可能再度發生。這樣的潛在失誤即便不易被發現,仍必須設法探討以防患於未然。因此,本研究的目的乃在於建構方便使用的潛在失誤分析方法,藉此找出急需改善的潛在失誤因素。
本研究以某航空公司之飛航維修作業事故紀錄為主要探討案例,在基於事故已發生的考量下,選擇根本原因分析法為主要的分析方法,從事件端對潛在失誤進行探討,能更有系統地深入意外與事故分析,同時為兼顧通用性定義因子可從已發展的相近領域因子庫中選擇,在節省時間的同時也增加研究彈性,強化分析的深度及廣度。透過本研究方法的應用並配合問卷調查115位具充分經驗之維修人員的分析結果可知:相較於其他的人為失誤辨識技術,本研究所提出的潛在失誤分析方法之結果能更直接的表示出需改善的優先次序,同時也留下量化的結果以供日後研究使用。
本研究主要包含以下結論:1) 關於現行台灣之飛航維修任務,其最重要的顯著因子為「任務執行失誤」,而同時對其最具影響力之潛在失誤則是「維護能力因素」。2) 根本原因分析法與因子庫的使用可有效降低探索潛在失誤因子過程的複雜度,同時可有效地確立因子間的關聯性。3) 研究結果除了提出潛在失誤導致的結果與改善方向外,尚提供了改善的優先順序與各顯著因子對應各維修步驟的參考值。
Today, although many works can be replaced by machines, the maintenance tasks still rely on people with unexpected mistakes at the same time. Usually the causes of these mistakes are due to a sequence of errors; however, if only reviewed the direct active errors without further investigation of indirect latent errors, the similar accident may happen again.
In this study, an analysis method is developed to find out the most important latent human error factor. By using Root Cause Analysis (RCA) method as the basic logic, Human Factor Analysis and Classification System (HFACS) as the factor source and daily check of aviation maintenance as a case study, this research dismantled the maintenance process and collected the data of each procedure. After designing the questionnaire by the preliminary factors and surveyed 115 experienced maintenance operators to do the analysis, the importance ranking of factors allows the airline to specifically design improvement plans directly, and the reference values have also been set for the use to related researches.
Here comes some sum up of conclusions in this study. First, the most important active factor is “Task execution error”, and the latent factor which has the most influence is “Maintenance capability.” Second, the combination of RCA and HFACS is an easy use method to investigate the causal inference and build the factor connection of collected data. Third, the research outcomes suggested not only the results caused by latent errors and the improvement direction, but the priorities for the improvement and the reference values of each active error factor to each step.
Asp, B. (2007). Maintenance Program development and the definition of the maintenance program process. School of Innovation, Design and Engineering
Ackert, M. S. P. (2010). Basics of Aircraft Maintenance Programs for Financiers.
Alan, D., Janet, F., Gregory, A. & Russell, B. (2004). Human-computer interaction. England: Pearson Education Limited.
Bahr, N. J. (2000). System safety engineering and risk assessment.International Encyclopedia of Ergonomics and Human Factors, 2, 1604.
Baysari, M. T., Caponecchia, C., McIntosh, A. S., & Wilson, J. R. (2009). Classification of errors contributing to rail incidents and accidents: A comparison of two human error identification techniques. Safety Science, 47(7), 948-957.
Bohner, S. A. (1996). Software change impact analysis.
Buys JR, Clark JL, Kingston-Howlett J. Events and causal factors analysis. http://www.eh.doe.gov/analysis/trac/14/trac14.html, accessed 12 May 2005.
Cacciabue, P. C. (2000). Human factors impact on risk analysis of complex systems. Journal of Hazardous materials, 71(1), 101-116.
Card, S., Moran, T. & Newell, A. (1986). The model human processor. Ariel, 192, 50-50.
Chauvin, C., Lardjane, S., Morel, G., Clostermann, J. P., & Langard, B. (2013). Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS. Accident Analysis & Prevention, 59, 26-37.
Cheng, C.M. (2013), Integration and Application of Human Error Identification Techniques on the Chemical Cylinder Change Task, Retrieved from National Tsing Hua University Library website: http://www.lib.nthu.edu.tw/
Dalijono, T., Castro, J., Löwe, K., & Löher, H. J. (2006). Reducing human error by improvement of design and organization. Process Safety and Environmental Protection, 84(3), 191-199.
Dave E. et al (1990). Barrier Analysis Facilitator’s Guide. Food for the Hungry
Dhillon, B. S. (2009). Human reliability, error, and human factors in engineering maintenance: with reference to aviation and power generation. CRC Press.
Döös, M., Backström, T., & Sundström-Frisk, C. (2004). Human actions and errors in risk handling—an empirically grounded discussion of cognitive action-regulation levels. Safety science, 42(3), 185-204.
Gano, D.L. (1999), Apollo Root Cause Analysis – A New Way Of Thinking (3rd ed.). Washington, DC: Apollonian Publications.
Goossens, L. & Hale, A. (1997). Risk assessment and accident analysis. Safety Science, 26(1), 21-23
Hammer, M., & Stanton, S. (1999). How process enterprises really work. Harvard business review, 77, 108-120.
Jenicek, M. (2010). Medical Error and Harm: Understanding, Prevention, and Control. CRC Press.
Jørgensen, K. (2011). A tool for safety officers investigating “simple” accidents.Safety science, 49(1), 32-38.
Karuppusami, G., & Gandhinathan, R. (2006). Pareto analysis of critical success factors of total quality management: A literature review and analysis.The TQM magazine, 18(4), 372-385.
Katsakiori, P., Sakellaropoulos, G., & Manatakis, E. (2009). Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models. Safety Science, 47(7), 1007-1015.
Kennedy, R., & Kirwan, B. (1998). Development of a hazard and operability-based method for identifying safety management vulnerabilities in high risk systems. Safety Science, 30(3), 249-274.
Kill, R. (2012). The BRC Global standard for food safety: A guide to a successful audit. John Wiley & Sons.
Kirwan, B. (1992a). Human error identification in human reliability assessment. Part 1: Overview of approaches. Applied ergonomics, 23(5), 299-318.
Kirwan, B. (1992b). Human error identification in human reliability assessment. Part2: Detailed comparison of techniques. Applied Ergonomics, 23(6),371-381
Kirwan, B. (1998a). Human error identification techniques for risk assessment of high risk systems—Part 1: review and evaluation of techniques. Applied ergonomics, 29(3), 157-177.
Kirwan, B. (1998b). Human error identification techniques for risk assessment of high risk systems—Part 2: towards a framework approach. Applied ergonomics, 29(5), 299-318.
Kmenta, S., & Ishii, K. (2000, September). Scenario-based FMEA: a life cycle cost perspective. In Proc. ASME Design Engineering Technical Conf. Baltimore, MD.
Modarres, M., Kaminskiy, M., & Krivtsov, V. (1999). Reliability engineering and risk analysis: a practical guide (Vol. 55). CRC press.
Norman, D. A. (1988). The Design of Everyday Things. New York, NY: Basic Books.
Paul, M.S., Miranda, C., Margaret, J.T. (2012), “Systems-based accident analysis methods: A comparison of Accimap, HFACS, and STAMP”, Safety Science Volume 50 No. 4
Pentti, H., & Atte, H. (2002). Failure mode and effects analysis of software-based automation systems. STUK-Y TO-TR-19 0, August, 2(00), 2.
Reason, J. (1990), Human Error. New York, NY: Cambridge University Press.
Reason, J. (1997). Managing the risks of organizational accidents. United Kingdom: Ashgate.
Ron, P (2007). 10 Steps to Creating a FMEA. http://lssacademy.com/2007/06/28/10-steps-to-creating-a-fmea/
Rooney, J. J., & Heuvel, L. N. V. (2004). Root cause analysis for beginners.Quality progress, 37(7), 45-56.
Rouse, W. B. & Rouse, S. H. (1983), Analysis and classification of human error. New York, NY: IEEE Transactions on Systems, Man, and Cybernetics, SMC-14, 539-549.
Salmon, P., Stanton, N. A., & Walker, G. (2003). Human Factors Design Methods Review. HFIDTC/WP1, 3(1).
Salmon, P. M., Cornelissen, M., & Trotter, M. J. (2012). Systems-based accident analysis methods: A comparison of Accimap, HFACS, and STAMP. Safety science, 50(4), 1158-1170.
Senders, J. W. (2004). FMEA and RCA: the mantras; of modern risk management. Quality and Safety in Health Care, 13(4), 249-250.
Shappel, S. A., & Wiegmann, D. A. (2000). The human factors analysis and classification system--HFACS (No. DOT/FAA/AM-00/7). US Federal Aviation Administration, Office of Aviation Medicine.
Sheridan, T. B. (2008). Risk, human error, and system resilience: fundamental ideas. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3), 418-426.
Shorrock, S. T., & Kirwan, B. (2002). Development and application of a human error identification tool for air traffic control. Applied Ergonomics, 33(4), 319-336.
Stamatis, D. H. (2003). Failure mode effect analysis: FMEA from theory to execution. ASQ Quality Press.
Stanton, N. A., Harris, D., Salmon, P. M., Demagalski, J. M., Marshall, A., Young, M. S., Dekker, S. W. A. & Waldmann, T. (2006). Predicting design induced pilot error using HET (human error template) - A new formal human error identification method for flight decks. Aeronautical Journal, 110, 107-115.
Stanton, N. A., & Walker, G. H. (2013). Human factors methods: a practical guide for engineering and design. Ashgate Publishing, Ltd..
Swain, A. D., Guttmann, H. E. (1983). Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications: Final report (NUREG/CR-1278). Washington, DC: Nuclear Regulatory Commission.
Verbano, C., & Turra, F. (2010). A human factors and reliability approach to clinical risk management: Evidence from Italian cases. Safety Science, 48(5), 625-639.
Walter, D. (2000). Competency-based on-the-job training for aviation maintenance and inspection–a human factors approach. International Journal of Industrial Ergonomics, 26(2), 249-259.
Wu, T. M., & Hwang, S. L. (1989). Maintenance error reduction strategies in nuclear power plants, using root cause analysis. Applied ergonomics, 20(2), 115-121.