簡易檢索 / 詳目顯示

研究生: 蕭智尹
Hsiao, Chih-Yin
論文名稱: 微波寬頻放大器的設計與分析
Design and Analysis of Microwave Wideband Amplifiers
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 60
中文關鍵詞: 寬頻放大器平衡式放大器分散式放大器
外文關鍵詞: wide band amplifier, balanced amplifier, distributed amplifier
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With the growth of the IT industry, the technologies for communication applications attract more and more attention in these years. Recently, the demand for high data rate makes the research of RFICs moving toward higher frequencies with an extended bandwidth. In this study, we use mainly two techniques for wideband amplifier design, balanced amplifier and distributed amplifier. We focus on how to improve the issues existing in conventional configurations, and also try to increase the bandwidth of the amplifiers with the minimum extra power consumption.
    First, we design two balanced amplifiers in 0.18 □m TSMC standard CMOS technology. The design of couplers is critical in balanced amplifier, in which the Lange coupler is adopted with the proposed pattern ground shield technology. The noise cancelling technique and dual-gate MOSFETs are employed for the active circuits. Form the result of measurement, these technologies can not only improve the noise but also increase the bandwidth of the balanced amplifiers.
    Second, we design the distributed amplifiers with the proposed gate-drain coupling feedback approach to reduce the power consumption and increase the bandwidth simultaneously. The folded topology is used to achieve a compact layout and reduce the loss of the metal stubs. This structure is produced in 0.18□m and 90nm TSMC stand CMOS technology. This structure is further improved by cascading two gain stages to reduce the supply voltage of circuit for low power consumption. From the measurement results, the gate-drain coupling feedback can effectively increase the bandwidth and reduce the power consumption of the distributed amplifiers.


    隨著資訊科技的發展,近年來人們對於通訊技術的需求愈顯重要。由於對高速率傳輸的需求增加,使得射頻晶片的設計開始不斷的向高頻以及寬頻進行研究。本研究針對常見的兩種寬頻放大器;平衡式放大器以及分散式放大器進行研究以及設計,分別針對放大器的缺點進行改善並同時提升寬頻放大器的增益頻寬。
    首先文中先針對平衡式放大器進行設計,在0.18微米台積電標準CMOS製程上設計了兩種架構,偶合器的部分;皆使用藍基耦合器為基底,搭配pattern ground shield技術進行設計。而放大器部份分別是利用雜訊抵銷技術以及實驗室研究之疊接形式的雙閘極金氧半場效電晶體模型進行設計,後者並搭配寬頻提升技術已達到耦合器所及之最寬的頻寬。經由量測結果可知,以上技術確實能減少平衡式放大器的雜訊以及寬頻提升技術對放大器頻寬的提昇。
    其後針對分散式放大器進行設計,利用閘極-汲極電感回授技術進行設計,以減少功率損耗並提升增益頻寬,並且將電路佈局做了凹折設計,已達到較小的面積以及較低的金屬走線損失。此架構分別利用0.18微米以及90奈米台積電標準CMOS製程上設計。最後,將此架構進行進一步的改善,利用串接方式進行分散式放大器的設計,以節省電路所需要的供應電壓。經由量測結果可知,閘極-汲極電感回授技術能提升放大器的頻寬,並減少電路的功率損耗。

    Abstract 2 Chapter I Introduction 9 1.1 Motivational 9 1.2 Thesis organization 10 Chapter II Basic Concepts of Balanced Amplifiers 12 2-1 The applications of wideband amplifier 12 2-2 The principles of balanced amplifier 12 Chapter III Proposed Balanced Amplifier 18 3.1 Noise cancelling balanced amplifier 18 3.1.1 Pattern Ground Shield Lange Coupler & Inductor 18 3.1.2 Noise Canceling 21 3.1.3 Simulation and Measurement Result 22 3.2 Wideband peaking balanced amplifier 24 3.2.1 CMOS Dual Gate NMOSFETs RF Model 25 3.2.2 Wide Band Peaking Balanced Amplifier 27 3.2.3 Simulation and Measurement Result 28 3.3 Summary and Discussion 31 Chapter VI Basic Concepts of Distributed Amplifiers 32 4-1 The principles of distributed amplifier 32 Chapter V Proposed Distributed Amplifier 39 5.1 Gate-drain coupling distributed amplifier 39 5.1.1 Proposed Circuit Topology and Analysis 39 5.1.2 Layout Design of Gate-Drain Coupling Inductors 45 5.1.3 Simulation and Measurement Results 47 5.2 Cascade gate drain coupling distributed amplifier 51 5.2.1 Proposed Circuit Topology and Analysis 52 5.2.2 The Improvement of Cascade Gate-Drain Coupling Layout 53 5.2.3 Simulation Results 54 5.3 Summary and Discussion 55 Chapter VI Conclusion and Future Work 57 6.1 Conclusion 57 6.2 Future Work 57 References 59

    [1] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
    [2] A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, and D. Ritter, “Multilayer MMIC broad-side coupler with a symmetric structure,” IEEE Microwave and Guided Wave Letters, vol. 7, no. 6, pp. 145-146, June1997.
    [3] L. Krishnamurthy, Q. Sun, V. T. Vo, G. Parkinson, D. K. Paul, K. Williams, and A. A. Rezazadeh, “A comparative study of active and passive GaAs microwave couplers,” EGAAS Gallium Arsenide and Other Semiconductor Application Symposium, 3-4. pp. 253-356, Oct. 2005.
    [4] K. W. Hamed, A. P. Freundorfer, and Y. M. M. Antar, “A new broadband monolithic passive differential coupler for K/ka-band applications,” IEEE Trans. Microwave Theory and Techn., vol. 54, issue 6, pp. 2527-2533, June 2006.
    [5] F. Bruccoleri and Eric A. M. Klumperink, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no.2, Feb. 2004.
    [6] W. R. Deal, M. Biedenbender, P. H. Liu, J. Uyeda, M. Siddiqui, and R. Lai, “Design and analysis of broadband dual-gate balanced low-noise amplifiers,” IEEE J. Solid-State Circuits, vol. 42, no.10, Oct. 2007.
    [7] K. W. Yu, et al., “K-band low-noise amplifiers using 0.18 □m CMOS technology,” IEEE Microwave and Wireless Components Letters, Vol. 14, Issue 3, pp.106-108, March 2004.
    [8] C. H. Doan, S. Emami, A. M. Nikneiad, and R. W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
    [9] J. H. Tsai, et al., “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” IEEE Radio Frequency Integrated Circuits(RFIC) Symposium, June 2007.
    [10] X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microw. Theory. Tech., vol. 54, no. 8, pp. 3278-3283, Aug. 2006.
    [11] K. Entesari, A. P. Tavakoli, and A. Helmy, “CMOS distributed amplifiers with extended flat bandwidth and improved input matching using gate line with coupled inductors,” IEEE Trans. Microwave Theory and Techn., vol. 57, no. 12 , MAY 2009.
    [12] Y. J. Wang and A. Hajimiri, “A compact low-noise weighted distributed amplifier in CMOS ,” IEEE ISSCC Dig. Tech. Papers , pp. 220–221a, Feb. 2009.
    [13] R. E. Amaya, N. G. Tarr, and C. Plett, “A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguide,” IEEE Radio Frequency Integrated Circuits(RFIC) Symposium, pp.193-196 June 2004.
    [14] J. C. Chien and L. H. Lu, “40Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18□m CMOS,” ISSCC Dig. Tech. Papers, pp. 538-539, Feb. 2007.
    [15] L. H. Lu, T. Y. Chen, and Y. J. Lin, “A 32-GHz non-uniform distributed amplifier in 0.18-□m CMOS,”Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 754–747, Nov. 2005.
    [16] K. Moez and M. Elmasry, “A 10dB 44GHz loss-compensated CMOS distributed amplifier,” IEEE ISSCC Dig. Tech. Papers, pp. 548–549, Feb. 2007.
    [17] R. C. Liu, T. P.Wang, L. H. Lu, and H. Wang, “An 80GHz traveling-wave amplifier in a 90nm CMOS technology,” IEEE ISSCC Dig.Tech. Papers , pp. 154–590, Feb. 2005.
    [18] F. Ellinger, “60-GHz SOI CMOS traveling-wave amplifier with NF below 3.8dB from 0.1 to 40GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 553-558, Feb. 2005.
    [19] J. D. Jin and S.S.H. Hsu, “40-Gb/s transimpedance amplifier in 0.18-□m cMOS technology,” Solid-State Circuits Conference, pp. 520-523, Feb. 2006.
    [20] D. M. Pozar, Microwave Engineering, 3rd Ed., Toronto; John Wiley & Sons, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE