簡易檢索 / 詳目顯示

研究生: 楊峻齊
Yang, Chun-Chi
論文名稱: 基於量子電路保真度之快速繞線演算法
Efficient Fidelity-Aware Qubit Routing
指導教授: 麥偉基
Mak, Wai-Kei
口試委員: 王廷基
Wang, Ting-Chi
陳宏明
Chen, Hung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 38
中文關鍵詞: 量子繞線超導量子
外文關鍵詞: Qubit Routing, Superconducting Quantum
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於量子電腦強大的計算能力及其潛力,而被期望能夠解決傳統電腦無法輕易解決的問題,因此近年來逐漸獲得越來越高的關注度。世界知名的科技公司諸如IBM,Google,Microsoft等也早已投入研究,發展至今已有超過百位元的量子處理器架構被提出,並且能夠實際運行。然而,在量子電腦中,大部分的物理量子位元兩兩之間並未相互連接,但其中針對兩個量子位元進行操作的量子邏輯閘僅能實行在具有相互連接的物理量子位元之間。為了能夠執行量子電路,必須將其轉換為功能相同且滿足目標量子電腦架構限制的電路。此轉換過程無可避免會增加額外的邏輯閘,而這會大幅降低量子電路的保真度,因此,設計一個以電路保真度為主要目標的演算法來完成電路轉換是一項不可或缺的工作。電路轉換主要由量子位元佈局及量子位元繞線所組成。在此篇論文中,我們提出一個考慮量子電路保真度的量子位元繞線演算法,實驗結果顯示提出的演算法相比於據我們所知的最新技術,能夠在極短的時間內,獲得保真度相當抑或更好的轉換結果。


    Quantum computers are anticipated to address many problems that conventional computers struggle to solve easily. Due to their immense computational power and vast potential, quantum computers have garnered significant attention in recent years. World-renowned technology companies such as IBM, Google, Microsoft, etc., have long been investing in research. So far, quantum processors of more than 100-bit have been designed and are capable of practical operation. However, in a quantum computer, the majority of physical qubits are not interconnected, but the 2-qubit gates can only be implemented between physical qubits connected to each other. In order to successfully execute a quantum circuit, it is essential to convert it into a functionally identical circuit that meets the constraints of the target quantum computer architecture. This transformation of the quantum circuit unavoidably introduces extra quantum gates, which have the potential to diminish the fidelity of the quantum circuits significantly. Therefore, it is crucial to develop an algorithm that prioritizes circuit fidelity as the primary goal. Transformation is mainly composed of qubit-placement and qubit-routing. In this thesis, our focus is on qubit-routing. We propose an efficient fidelity-aware qubit-routing algorithm, and experimental results show that our algorithm can achieve transformation results with comparable or better fidelity in a significantly shorter time compared to the current state-of-the-art technique.

    誌謝 摘要 i Abstract ii 1 Introduction 1 1.1 Motivation------------------------------------1 1.2 Previous Works--------------------------------2 1.3 Contributions---------------------------------4 1.4 Organization----------------------------------4 2 Preliminaries 5 2.1 Quantum Computation---------------------------5 2.1.1 Qubits------------------------------------5 2.1.2 Quantum Gates-----------------------------5 2.1.3 Quantum Circuits--------------------------6 2.1.4 Quantum Devices---------------------------7 2.1.5 Gate Error Rate---------------------------7 2.2 Problem Formulation---------------------------10 3 Proposed Approach 11 3.1 Overall Flow----------------------------------11 3.2 Construct the Shortest Error Distance Table---14 3.3 Get Candidate SWAPs---------------------------16 3.4 Find the Best SWAP----------------------------17 3.5 Illustrative Example--------------------------19 4 Experimental Results 29 4.1 Setup-----------------------------------------29 4.2 Results on Benchmark Set----------------------29 5 Conclusion 33

    [1] C. Zalka,. “Grover’s quantum searching algorithm is optimal,”Physical Review A, vol.60, no. 4, pp. 2746-2751, 1999.
    [2] Peter W. Shor. 1997. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM J. Comput. 26, 5 (Oct. 1997), 1484–1509. https://doi.org/10.1137/S0097539795293172
    [3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. “Quantum cryptography,” Rev. Mod. Phys., vol. 74, pp.145-195, 2002.
    [4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenze, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical Review A, vol. 52, no. 5, pp. 3457-3467, 1995.
    [5] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. 2013. “A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits,” Trans. Comp.-Aided Des. Integ. Cir. Sys. 32, 6 (June 2013), 818 – 830. https://doi.org/10.1109/TCAD.2013.2244643
    [6] K. Matsumoto and K. Amano, “Representation of quantum circuits with clifford and π/8 gates,” arXiv preprint arXiv:0806.388834, 2008.
    [7] Gushu Li, Yufei Ding, and Yuan Xie. 2019. “Tackling the Qubit Mapping Problem for
    NISQ-Era Quantum Devices,” In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 1001–1014. https://doi.org/10.1145/3297858.3304023
    [8] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t|ket>: a retargetable compiler for NISQ devices,” Quantum Sciences and Technology, vol. 6 no.1, p. 014003, 2020.
    [9] Ching-Yao Huang, Chi-Hsiang Lien, and Wai-Kei Mak. 2022. “Reinforcement Learning and DEAR Framework for Solving the Qubit Mapping Problem,” In Proceedings
    of the 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD’22). Association for Computing Machinery, New York, NY, USA, Article 106, 1–9. https://doi.org/10.1145/3508352.3549472
    [10] S. Li, X. Zhou and Y. Feng, “Qubit Mapping Based on Subgraph Isomorphism and Filtered Depth-Limited Search,” in IEEE Transactions on Computers, vol. 70, no. 11, pp. 1777-1788, 1 Nov. 2021, doi: 10.1109/TC.2020.3023247
    [11] X. Zhou, S. Li and Y. Feng, “Quantum Circuit Transformation Based on Simulated Annealing and Heuristic Search,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4683-4694, Dec. 2020, doi:10.1109/TCAD.2020.2969647.
    [12] Bochen Tan and Jason Cong. 2020. “Optimal layout synthesis for quantum computing,”
    In Proceedings of the 39th International Conference on Computer-Aided Design (ICCAD’20). Association for Computing Machinery, New York, NY, USA, Article 137, 1–9. https://doi.org/10.1145/3400302.3415620
    [13] H. Deng, Y. Zhang and Q. Li, “Codar: A Contextual Duration-Aware Qubit Mapping for
    Various NISQ Devices,” 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2020, pp. 1-6, doi: 10.1109/DAC18072.2020.9218561.
    [14] Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang.
    2021. “Time-optimal Qubit mapping,” In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA, 360–374. https://doi.org/10.1145/3445814.3446706
    [15] H. Fu, M. Zhu, J. Wu, W. Xie, Z. Su and X. -Y. Li, “Effective and Efficient Qubit Mapper,”
    2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Francisco, CA, USA, 2023, pp. 1-9, doi: 10.1109/ICCAD57390.2023.10323857.
    [16] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi. 2019. “Noise-Adaptive Compiler Mappings for Noisy IntermediateScale Quantum Computers,” In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 1015–1029. https://doi.org/10.1145/3297858.3304075
    [17] S. Niu, A. Suau, G. Staffelbach and A. Todri-Sanial, “A Hardware-Aware Heuristic for the Qubit Mapping Problem in the NISQ Era,” in IEEE Transactions on Quantum Engineering, vol. 1, pp. 1-14, 2020, Art no. 3101614, doi: 10.1109/TQE.2020.3026544
    [18] S. Khandavilli, I. Palanisamy, M. V. Nguyen, T. V. Le, T. N. Nguyen and T. N. Dinh, “Towards Fidelity-Optimal Qubit Mapping on NISQ Computers,” 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Bellevue, WA, USA, 2023, pp. 89-98, doi: 10.1109/QCE57702.2023.00019.
    [19] P. Zhu, W. Ding, L. Wei, X. Cheng, Z. Guan and S. Feng, “A Variation-Aware Quantum Circuit Mapping Approach Based on Multi-Agent Cooperation,” in IEEE Transactions on Computers, vol. 72, no. 8, pp. 2237-2249, 1 Aug. 2023, doi: 10.1109/TC.2023.3242208.
    [20] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline Collange, and Fernando Magno Quintao Pereira. 2018. “Qubit allocation,” In Proceedings of the 2018 International Symposium on Code Generation and Optimization (CGO 2018). Association for Computing Machinery, New York, NY, USA, 113–125. https://doi.org/10.1145/3168822
    [21] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter. 2020. “Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation,” J. Emerg. Technol. Comput. Syst. 16, 3, Article 32 (July 2020), 25 pages. https://doi.org/10.1145/3386162
    [22] IBMQ, “IBM Quantum Platform,” https://quantum.ibm.com/
    [23] IBM Qiskit, “IBM Qiskit,” https://www.ibm.com/quantum/qiskit

    QR CODE