研究生: |
錡鴻鈞 Chi, Hung Jiun |
---|---|
論文名稱: |
基於類Duffing模型之磁流變阻尼器控制研發 Control Development of Magnetorheological Damper Using Duffing-like Model |
指導教授: |
杜佳穎
Tu, Jia Ying |
口試委員: |
林子剛
徐勝均 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 磁流變阻尼器 、Duffing 方程式 、磁滯現象 |
外文關鍵詞: | Magnetorheological damper, Duffing equation, Hysteresis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的在討論基於磁流變阻尼器之控制器研發,本論文使用磁流變阻尼器(magnetorheological damper)作為隔震系統中的減震裝置,隔震系統常見於地震與土木工程研究領域,磁流變阻尼器是一利用磁流變液(magnetorheological fluid)通電後,流體會產生流變效應而製成的阻尼裝置,廣泛地應用在基底隔震、土木工程以及機械工程系統中,藉由外加磁場的大小使得磁流變阻尼器成為一種可控制、可調變的智能阻尼裝置,然而磁流變阻尼器內部的非線性磁滯動態使得在系統建模與控制設計上十分不易。
相較於文獻中之Bouc-Wen模型存在非連續、片段、非確定型函數,限縮了分析與控制方法發展。本論文使用一創新、連續且動態確定之類Duffing 方程式,來識別磁流變阻尼器的磁滯動態行為,以建立一確定性且系統化的模型,並基於此模型進行後續最佳化參數識別、穩定度分析、半主動控制方法研發與減震實務驗證,以期能確實掌握磁流變阻尼器之輸出響應,且有效控制之。
在最後模擬與實驗中,類Duffing模型將會與文獻中之Bouc-Wen模型互相分析與比較,以驗證類Duffing模型之效果與準確度,並比較Bouc-Wen模型與類Duffing模型在結構物減震中之模擬與實驗結果,驗證兩者皆能有效的達到結構物減震目標。
The purpose of this study is about Control Development of Magnetorheological Damper Using Duffing-like Model. Semi-active control of magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes.
The Bouc-Wen model in the literature has complex mathematical equations including discontinuous, nondeterministic, and piecewise functions render the system identification, stability analysis, and control design processes to be difficult. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible.
In the result of simulation and experiment, the comparison between the Bouc-Wen model and Duffing-like model will be shown to verify the purpose for vibration reduction of structural systems.
1. 林沛暘, Roschke, P.N., 羅俊雄, 鍾立來, and Chang, C.P., Semi-Active Control of a Structure with an MR Damper. 2002, 國家地震工程研究中心.
2. Jr., B.F.S., Dyke, S.J., Sain, M.K., and Carlson, J.D., Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 1997. 123(3): p. 230-238.
3. Dyke, S.J., Jr, B.F.S., Sain, M.K., and Carlson, J.D., Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures, 1996. 5(5): p. 565-575.
4. Tse, T. and Chang, C.C., Shear-mode rotary magnetorheological damper for small-scale structural control experiments. Journal of Structural Engineering, 2004. 130(6): p. 904-911.
5. Kuo, W.H., Yang, T.C., Hsu, C.C., and Chio, H.C., Study on magnetorheological damper of flow mode. Journal of Technology, 2011. 26: p. 217-223.
6. Prabakar, R.S., Sujatha, C., and Narayanan, S., Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper. Journal of Sound and Vibration, 2009. 326(3-5): p. 400-20.
7. Yao, G.Z., Yap, F.F., Chen, G., Li, W.H., and Yeo, S.H., MR damper and its application for semi-active control of vehicle suspension system. Mechatronics, 2002. 12(7): p. 963-73.
8. Moon, S.J., Bergman, L.A., and Voulgaris, P.G., Sliding mode control of cable-stayed bridge subjected to seismic excitation. Journal of Engineering Mechanics, 2003. 129(1): p. 71-78.
9. Li, H. and Wang, J., Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers. Smart Materials and Structures, 2011. 20(8): p. 085026.
10. Pang, L., Kamath, G.M., and Wereley, N.M. Dynamic characterization and analysis of magnetorheological damper behavior. in Smart Structures and Materials: Passive Damping and Isolation, 2-3 March 1998. USA: SPIE-Int. Soc. Opt. Eng.
11. Dyke, S.J., Spencer, B.F., Jr., Sain, M.K., and Carlson, J.D. Seismic response reduction using magnetorheological dampers. in 13th World Congress. Vol.L: Systems Engineering and Management. 1997. Oxford, UK: Pergamon.
12. Yang, G., Spencer Jr, B.F., Carlson, J.D., and Sain, M.K., Large-scale MR fluid dampers: Modeling and dynamic performance considerations. Engineering Structures, 2002. 24(3): p. 309-323.
13. Choi, S.B., Lee, S.K., and Park, Y.P., A hysteresis model for the field-dependent damping force of a magnetorheological damper. Journal of Sound and Vibration, 2001. 245(2): p. 375-83.
14. Jansen, L.M. and Dyke, S.J., Semi-active control strategies for MR dampers: Comparative study. Journal of Engineering Mechanics, 2000. 126(8): p. 795-803.
15. Duffing, G., Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre Technische Bedeutung. 1918.
16. Tu, J.Y., Cheng, T.Y., and Lin, P.Y., Using Duffing Equation to Model Magnetorheological Damper Dynamics, in 6th World Conference on Structural Control and Monitoring(6WCSCM)2014: Barcelona, Spain
17. Tu, J.Y., Cheng, T.Y., and Lin, P.Y., Continuous hysteresis model using Duffing-like equation.
18. 賴俊兆、連豊力, 高樓建築避震的自動控制. 科學發展. Vol. 497. 2014: 科技部. 68-71.
19. Shook, D., Lin, P.-Y., Lin, T.-K., and Roschke, P.N., A comparative study in the semi-active control of isolated structures. Smart Materials and Structures, 2007. 16(4): p. 1433-1446.
20. Ricciardelli, F., Occhiuzzi, A., and Clemente, P., Semi-active tuned mass damper control strategy for wind-excited structures. Journal of Wind Engineering and Industrial Aerodynamics, 2000. 88(1): p. 57-74.
21. Ali, S.F. and Ramaswamy, A., Testing and modeling of MR damper and its application to SDOF systems using integral backstepping technique. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2009. 131(2): p. 1-11.
22. Kim, H.-S. and Roschke, P.N., Design of fuzzy logic controller for smart base isolation system using genetic algorithm. Engineering Structures, 2006. 28(1): p. 84-96.
23. Loh, C.-H., Wu, L.Y., and Lin, P.Y., Displacement control of isolated structures with semi-active control devices. Journal of Structural Control, 2003. 10(2): p. 77-100.
24. Yan, S., Zheng, W., and Song, G. GA-optimized fuzzy logic control of high-rise building for wind loads. in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, March 9, 2009 - March 12, 2009. 2009. San Diego, CA, United states: SPIE.
25. Li, L., Song, G., and Ou, J., Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control. Journal of Vibration and Control, 2010. 16(10): p. 1503-26.
26. Huang, Z.S., Wu, C., and Hsu, D.S., Semi-Active Fuzzy Control of Mr Damper on Structures by Genetic Algorithm. Journal of Mechanics, 2009. 25(1): p. N1-N6.
27. Ehrgott, R.C. and Masri, S.F., Modeling the oscillatory dynamic behavior of electrorheological materials in shear. Smart Materials and Structures, 1992. 1(4): p. 275-285.
28. Gavin, H.P., Hanson, R.D., and Filisko, F.E. Electrorheological dampers, Part I: Analysis and design. in ASME International Mechanical Engineering Congress & Exhibition. 1996. Atlanta, GA, USA: ASME.
29. Chih-Chen, C. and Roschke, P., Neural network modeling of a magnetorheological damper. Journal of Intelligent Material Systems and Structures, 1998. 9(9): p. 755-64.
30. Stanway, R., Sproston, J.L., and Stevens, N.G., Non-linear modelling of an electro-rheological vibration damper. Journal of Electrostatics, 1987. 20(2): p. 167-184.
31. Gamota, D.R. and Filisko, F.E., Dynamic mechanical studies of electrorheological materials: moderate frequencies. Journal of Rheology, 1991. 35(3): p. 399-425.
32. Cheng, T.-Y., Using Duffing Equation to model Magnetorheological Damper Dynamics. Master thesis, Power Mechanical Engineering, National Tsing Hua University, 2014.