簡易檢索 / 詳目顯示

研究生: 劉禹賢
Yu-Xian Liu
論文名稱: 用微波與鐵加速生質柴油中酯化反應
Enhance the Esterification Reaction Rate of Biodiesel Using Microwave with Fe
指導教授: 張存續
Chang, Tsun-Hsu
口試委員: 趙賢文
Chao, Hsien-Wen
汪上曉
Wong, Shang-Hsiao
李義發
Lee, Yih-Fa
王明瑞
Wang, Ming-Rui
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 39
中文關鍵詞: 酯化反應微波
外文關鍵詞: Esterification, Microwave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文解決了原本耗時的生質柴油中酯化反應。文獻中表示了以生質
    柴油製程中的酯化反應與轉酯化反應可以利用微波加熱加速反應速度,
    微波作為熱源進行加熱相對於傳導式加熱可以更好的被反應物吸收,然
    而利用微波依舊需要耗費大量的時間才能完成製程。
    為了解決這個的問題,實驗中優化了文獻中提及的奈米粒子聚場的
    想法,加入直徑 6 公釐大的鐵球進行實驗,實驗結果顯示鐵是可以有效的
    加速降低酸價的速度的,因此採用了鐵作為催化劑這一想法並利用傳統
    與微波腔體進行比較。
    本論文的微波腔體是由趙賢文博士所設計出的微波腔體,利用
    2.45GHz 的微波源,另外搭配阻抗調節器,這樣一來就可以在 1kW 左右
    的功率來微波加熱,並且打入腔體的波源可以有效的耦合進入腔體,降
    低反射波之外還能讓有效的利用微波進行加熱。
    為了比較鐵作為催化劑對酯化反應的作用,實驗中做了三個比較:(1)
    加入不同催化劑 – Fe、 2 3 Fe O 、 3 4 Fe O
    (2)用不同重量的鐵網 (3)用鐵網與
    鐵粉 – 比較不同表面積差異;比較的方式是利用一級反應的 k 值大小作為
    反應速度的比較,為了方便比較實驗反應速度快慢,定義傳統加熱的 k 值
    為 1;催化劑分析中發現鐵的效果最好。在不同網重的實驗中發現了加入
    更多的網子的實驗提速較為明顯,並且也透過了這一組實驗發現鐵會有
    質量損耗。在鐵網與鐵粉的實驗中鐵粉的 k 值大約是等重鐵網的 3 倍,與
    傳統加熱相比,大約是 10 倍。


    This thesis address a main problem which involves acceleration of the
    esterification reaction in biodiesel. Traditionally, one challenge in biodiesel
    production is that the time consumption is relatively high.
    Previous research has shown that both the reaction rate of esterification and
    transesterification can be accelerated by microwaves the production of biodiesel.
    Microwave heating, which adopts the microwave as a thermal source, prevails
    over conduction heating.
    However, lots of time consumed in the process remains a main problem even
    due to the microwave method.
    To solve this problem, an idea of nanoparticle aggregation proposed in the
    literature was optimized. In this thesis, the experiments involve an addition of
    iron (Fe) spheres with a diameter of 6 mm. The results suggest that iron can
    effectively catalyze the reaction. Therefore, comparison between conventional
    and microwave methods is performed underneath the idea that iron plays a role
    as catalyst during the reactions.
    Dr. Hsien-Wen Chao designed a microwave cavity adopted by this research.
    Using 2.45GHz microwave source with impedance adjuster is equipped on the
    whole system.
    Used power for microwave heating is roughly 1kW. The microwave generated
    by source couples into the cavity efficiently. Owing to proper design, the
    iii
    reflected wave is significantly reduced to provide the best performance to the
    heating process.
    In this thesis, three groups of comparison are performed in order to examine the
    catalyst effect of iron (Fe) . Details are following:
    1. Adding different catalysts, Fe、 2 3 Fe O 、 3 4 Fe O , in experiment
    2. Using Fe net of different weights
    3. Using iron net and iron powder, to compare different surface area, in the
    experiments
    The Esterification reaction mentioned above is a first-order reaction. In order to
    compare the reaction quantitatively, we use k value as an indicator in analysis.
    The k value of the conventional heating is defined to 1 for convenience.
    Iron (Fe) is added as a catalyst to compare the reaction. Data analysis shows that
    the Iron (Fe) is the most effective.
    On the other hand, different sizes of iron (Fe) nets used in experiments show that
    heavier nets facilitate the reaction more faster than others. Another result we
    found is that iron loses mass after the experiments.
    In the experiment of iron net and iron powder, the result shows that the k value
    of iron powder is roughly 3 times to the iron net of equal weight. The
    performance of using iron is about 10 times faster than the conventional method.

    摘要………………………………………………………………………i Abstract………………………………………………………………….ii 致謝……………………………………………………………………...iv 目錄……………………………………………………………………....v 一、緒論…………………………………………………………………1 1.1 前言………………………………………………………….......1 1.2生質柴油的製程介紹....................................................................3 1.2-1 生質柴油的製程方法……………………………………..3 1.2-2 轉酯化反應………………………………………………..4 1.2-3 酯化反應…………………………………………………..6 1.3 微波.............................................................................................. 7 1.3-1 微波介紹..............................................................................7 1.3-2 磁控管..................................................................................8 1.3-3 傳統與微波加熱..................................................................8 1.3-4 微波的加熱原理..................................................................9 1.3-5 介電系數............................................................................10 1.3-6 微波加熱對生質柴油製程的影響....................................11 二、研究動機…………………………………………………………..12 2.1 奈米銀的電場模擬與實驗結果……………………………….12 2.2 鐵的電場模擬………………………………………………….13 2.3 鐵球的實驗結果與討論……………………………………….14 2.4 鐵在酯化反應中扮演的角色………………………………….15 2.5 理論推測……………………………………………………….18 三、實驗介紹…………………………………………………………..19 vi 3.1 實驗方法……………………………………………………….19 3.1-1 實驗材料…………………………………………………19 3.1-2 實驗原理………………………………………………....20 3.1-3 實驗步驟…………………………………………………21 3.2 實驗系統……………………………………………………….21 3.2-1 傳統加熱系統……………………………………………21 3.2-2 微波加熱系統……………………………………………23 3.3 實驗分析方法………………………………………………….25 3.3-1 Acid Value (AV)值測定…………………………………25 3.3-2 數據作圖…………………………………………………25 3.3-3 一級反應 k 值計算……………………………………....26 3.3-4 實驗分析中的比較………………………………………26 四、實驗結果與討論…………………………………………………..27 4.1 實驗樣品圖…………………………………………………….27 4.2 催化劑比較…………………………………………………….29 4.3 不同重量比較………………………………………………….32 4.4 不同形狀比較………………………………………………….33 4.5 結果與討論…………………………………………………….35 五、 結論……………………………………………………………….36 參考文獻………………………………………………………………..37

    [1] Sabzevar, Arefe Moatamed, Mahboube Ghahramaninezhad, and Mahdi
    Niknam Shahrak. "Enhanced biodiesel production from oleic acid using
    TiO2-decorated magnetic ZIF-8 nanocomposite catalyst and its
    utilization for used frying oil conversion to valuable product." Fuel 288,
    119586 (2021).
    [2] Kareem, S. O., et al. "Enzymatic biodiesel production from palm oil and palm
    kernel oil using free lipase." Egypt. J. Pet. 26.3, 635-642 (2017).
    [3] Syafiuddin, Achmad, et al. "The current scenario and challenges of biodiesel
    production in Asian countries: A review." Bioresour. Technol. 12,
    100608 (2020).
    [4] Coronado, Christian Rodriguez, João Andrade de Carvalho Jr, and José Luz
    Silveira. "Biodiesel CO2 emissions: A comparison with the main fuels in
    the Brazilian market." Fuel Process. Technol. 90.2, 204-211 (2009).
    [5] Shafiee, Shahriar, and Erkan Topal. "When will fossil fuel reserves be
    diminished?." Energy policy 37.1, 181-189 (2009).
    [6] https://www.researchgate.net/figure/Biogas-production-at-2012-and-trendto-2022-in-different-areas-of-the-world-Pike_fig1_269463103
    [7] Nguyen, Hoang Chinh, et al. "Microwave-assisted noncatalytic esterification
    of fatty acid for biodiesel production: A kinetic study." Energies 13.9,
    2167 (2020).
    [8] Motasemi, F., and F. N. Ani. "A review on microwave-assisted production
    of biodiesel." Renew. Sust. Energ. Rev. 16.7, 4719-4733 (2012).
    [9] El Sherbiny, Shakinaz A., Ahmed A. Refaat, and Shakinaz T. El Sheltawy.
    "Production of biodiesel using the microwave technique." J. Adv. Res. 1.4,
    309-314 (2010).
    [10] Leadbeater, Nicholas E., and Lauren M. Stencel. "Fast, easy preparation of
    biodiesel using microwave heating." Energy Fuels 20.5, 2281-2283
    (2006).
    [11] Ma, Fangrui, and Milford A. Hanna. "Biodiesel production: a
    review." Bioresour. Technol. 70.1,1-15 (1999).
    [12] Meher, L. Cꎬ, D. Vidya Sagar, and S. N. Naik. "Technical aspects of
    biodiesel production by transesterification—a review." Renew. Sust.
    Energ. Rev. 10.3, 248-268 (2006).
    [13] Meher, L. Cꎬ, D. Vidya Sagar, and S. N. Naik. "Technical aspects of
    biodiesel production by transesterification—a review." Renew. Sust.
    Energ. Rev. 10.3, 248-268 (2006).
    [14] Saka, Shiro, and Dadan Kusdiana. "Biodiesel fuel from rapeseed oil as
    prepared in supercritical methanol." Fuel 80.2, 225-231 (2001).
    [15] Nomanbhay, Saifuddin, and Mei Yin Ong. "A review of microwave-assisted
    reactions for biodiesel production." Bioengineering 4.2,57 (2017).
    [16] Lotero, Edgar, et al. "Synthesis of biodiesel via acid catalysis." Ind. Eng.
    Chem. Res. 44.14, 5353-5363 (2005).
    [17] Hsiao, Ming-Chien, Pei-Hung Liao, and Hsiu-Ling Hsu. "Microwave-and
    Ultrasound-Enhanced Production of Biodiesel from Waste Cooking
    39
    Oil." International Symposium on Computer, Consumer and Control. IEEE,
    (2012).
    [18] Wang, Yong, et al. "Preparation of biodiesel from waste cooking oil via
    two-step catalyzed process." Energy Convers. Manag. 48.1,184-188 (2007).
    [19] Kushwaha, N. S., and M. M. Sharma. "High power microwave technology
    and its military implications." International Conference on Recent Advances in
    Microwave Theory and Applications. IEEE, 2008.
    [20] Boric-Lubecke, Olga, et al. "Microwave and wearable technologies for 5G."
    12th International Conference on Telecommunication in Modern Satellite, Cable
    and Broadcasting Services (TELSIKS). IEEE, 2015.
    [21] Leonelli, Cristina, and Timothy J. Mason. "Microwave and ultrasonic
    processing: now a realistic option for industry." Chem Eng Process 49.9, 885-
    900 (2010).
    [22] wiki 電磁波譜
    https://zh.wikipedia.org/wiki/%E9%9B%BB%E7%A3%81%E6%B3%A2%E8
    %AD%9C
    [23]wiki 多腔磁控管
    https://zh.wikipedia.org/wiki/%E5%A4%9A%E8%85%94%E7%A3%81%E6
    %8E%A7%E7%AE%A1
    [24]科安知識庫 用物理技術突破化學瓶頸 – 為什麼微波能提高反應速率?
    [25] 張政憲, “由增強電場加速生質柴油酯化反應之研究”國立清華大學
    物理研究所光電組碩士論文.(2021)
    [26] 許弘竣, “2.45 GHz微波加速生質柴油之酯化反應研究”國立清華大
    學物理研究所光電組碩士論文.(2020)
    [27] Ajala, E. O., et al. "Nano-synthesis of solid acid catalysts from waste-ironfilling for biodiesel production using high free fatty acid waste cooking oil." Sci.
    Rep. 10.1, 1-21 (2020).
    [28] Xie, Wenlei, and Ning Ma. "Immobilized lipase on Fe3O4 nanoparticles as
    biocatalyst for biodiesel production." Energy Fuels 23.3, 1347-1353 (2009)

    QR CODE