簡易檢索 / 詳目顯示

研究生: 林柏均
Po-Chun Lin
論文名稱: Conditional Importance Sampling for Basket Default Swaps Valuation under Factor Copula Models
指導教授: 韓傳祥
Chung-Hsiang Han
謝文萍
Wen-Ping Hsieh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 47
中文關鍵詞: Gaussian CopulaConditional Importance SamplingFactor ModelBasket Default Swaps
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Valuation of Basket Default Swaps (BDS), equivalent to calculation of the fair premium, is a challenging task in practice. The closed form solution of such contract is usually hard to find, thus we must resort to Monte Carlo (MC) method. Under ordinary scenarios, the MC method works well and yields an acceptable estimator. However, when high-rating assets are in one basket, naïve Monte Carlo is no more efficient (slow in convergence), or not effective
    at all (providing uninformative zero estimators.)

    To improve the quality of valuation, we propose two algorithms to refine the crude Monte Carlo. Both algorithms rely on conditional expectation and importance sampling (IS) techniques. The first algorithm is conditional on all
    marginal factors, and then choose an appropriate IS
    distribution carefully for the common factor. The second algorithm, however, does things reversely. We condition on the common factor in the first step, and shift every factor mean to “important” regions, by the conditional independence property. We find that conditioning on all trivial factors and changing the measures of principal
    factors is the best strategy. Both algorithms greatly outperform basic MC, measured in variances, when the default events are very rare.

    Besides, sensitivity analysis and comparisons of both algorithms’ performances are also presented. We also show that precise estimations from our algorithms are beneficial to both valuation (pricing) and Greek calculation (hedging.)


    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Introduction and Motivation 1 2 Characterization of Joint Default Time 5 2.1 Default Time of a Single Firm . . . . . . . . . . . . . . . . . . . 5 2.2 Copula Function . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Popular Copula Functions . . . . . . . . . . . . . . . . . 7 2.3 Factor Copula Model . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Problem Formulation 12 3.1 Pricing Basket Default Swaps . . . . . . . . . . . . . . . . . . . 12 3.2 Determining the Model Parameters . . . . . . . . . . . . . . . . 14 3.3 A Crude Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 More General Model Setups . . . . . . . . . . . . . . . . . . . . 18 4 Conditional Importance Sampling Schemes 20 4.1 Quick Review of Importance Sampling . . . . . . . . . . . . . . 20 4.2 Importance Sampling Conditional on Marginal Factors . . . . . 22 4.2.1 Another Change of Measure . . . . . . . . . . . . . . . . 27 4.3 Importance Sampling Conditional the Common Factor . . . . . 28 5 Numerical Results 32 5.1 Comparing Performances under Various Scenarios . . . . . . . . 32 5.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.1 Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.2 Factor Loadings . . . . . . . . . . . . . . . . . . . . . . . 38 5.2.3 Recovery Rates . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 Implied Correlations . . . . . . . . . . . . . . . . . . . . . . . . 42 6 Concluding Remarks and Further Works 44 Reference 46

    [1] Black, F. and J. Cox (1976). Valuing Corporate Securities: Some Effects
    of Bond Indenture Provisions. Journal of Finance, 31(2): 351-367.
    [2] Brigo, D. and F. Mercurio (2006). Interest Rate Models - Theory and Practice:
    With Smile, Inflation and Credit, Springer-Verlag.
    [3] Burtschell, X., J. Gregory, and J.-P. Laurent. (2007). Beyond the Gaussian
    Copula: Stochastic and local correlation. Journal of Credit Risk,
    3(1): 31-62.
    [4] Chaplin, G. (2005). Credit Derivatives: Risk Management, Trading and
    Investing, Wiley.
    [5] Chen, Z. and P. Glasserman (2006). Fast Pricing of Basket Default Swaps.
    Working Papaer, Columbia University.
    [6] Cherubini, U., E. Luciano, and W. Vecchiato. (2004). Copula Methods in
    Finance, Wiley.
    [7] Chiang, M.-H., M.-L. Yueh, and M.-H. Hsieh. (2007). An Efficient Algorithm
    for Basket Default Swap Valuation. Journal of Derivatives, Winter:
    1-22.
    [8] Duffie, D. and K. Singleton (1999). Modeling Term Structure of Defaultable
    Bonds. The Review of Financial Studies, 12(4): 687-720.
    [9] Duffie, D. (2003). Credit Risk: Pricing, Measurement, and Management,
    Princeton University Press.
    [10] Frees, E. W. and E. A. Valdez (1998). Understanding Relationships Using
    Copulas. North American Actuarial Journal, 2(1): 1-25.
    [11] Frye, J. (2000). Depressing Recoveries. Working Paper, Federal Reserve
    Bank of Chicago.
    [12] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering.
    New York, Springer-Verlag.
    [13] Gupton, G. M., C. C. Finger, and M. Bhatia. (1997). CreditMetric - Technical
    Document, Morgan Guaranty Trust Company.
    [14] Jäckel, P. (2002). Monte Carlo Methods in Finance. Wiley
    [15] Joshi, M. S. and D. Kainth (2004). Rapid and accurate development
    of prices and Greeks for nth to default credit swaps in the Li model.
    Quantitative Finance, 4: 266-275.
    [16] Lando, D. (1998). On Cox Processes and Credit Risky Securities. Review
    of Derivatives Research, 2: 99-120.
    [17] Lando, D. (2004). Credit Risk Modeling: Theory and Applications. Princeton
    University Press.
    [18] Laurent, J.-P. and J. Gregory (2005). Basket Default Swaps, CDOs and
    Factor Copulas. Journal of Risk, 7(4): 103-122.
    [19] Li, D. X. (2000). On Default Correlation: A Copula Function Approach.
    Journal of Fixed Income, 9(4): 43-54.
    [20] Merton, R. C. (1974). On the Pricing of Corporate Debt: The Risk Structure
    of Interest Rates. Journal of Finance, 29(2): 449-470.
    [21] Nelsen, R. B. (2006). An Introduction to Copulas , 2nd edition. Springer-
    Verlag.
    [22] Papageorgiou, E. and R. Sircar (2008). Multiscale Intensity Models for
    Single Name Credit Derivative. Applied Mathematical Finance, 15(1): 73-
    105.
    [23] Ross, S. (1998). A First Course in Probability, 5th edition. Printice-Hall.
    [24] Schönbucher, P. J. (2002). Taken to the Limit: Simple and Not-So-
    Simple Loan Loss Distributions. Working paper, Bonn University.
    [25] Schönbucher, P. J. (2003). Credit Derivatives Pricing Models. Wiley.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE