簡易檢索 / 詳目顯示

研究生: 趙筱瑀
Chao, Hsiao-Yu
論文名稱: 高效率k線通聯圖最佳化演算法及可靠的大型網路之建構的應用研究
CORONA: A k-COnnected RObust Interconnection Network Generation Algorithm
指導教授: 蔡仁松
Tsay, Ren-Song
口試委員: 王俊堯
Wang, Chun-Yao
張豐願
Chang, Fong-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 32
中文關鍵詞: 高可靠度對開路故障穩定網路k線通聯最佳化
外文關鍵詞: High reliability, open fault, k-edge-connected, robust network, optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑒於現今網路愈趨於龐大,原有建構最低成本可靠網路的演算法將不敷使用。在此論文中,我們提出一個高效率的演算法來建構大型的可靠網路,並同時有效地降低此網路的複雜度,進而節省成本。首先,我們利用k線通聯圖來建造網路的初始架構,因為在k線連通圖中每對頂點都有k個相連的路徑,且只要斷開的路徑數小於k個,每個頂點仍然是互通,所以我們藉此特性提高對開路故障的容忍度。但重複的路徑會導致成本的增加,於是我們設計了一個時間複雜度為O(n log n)的近似演算法:「CORONA」,來減少初始架構中路徑的總長度。CORONA亦可用於增加或減少k連通圖的頂點,並且保證其k線通聯的特性。實驗結果證明CORONA可在數分鐘內建構好內含十萬個頂點的k線連通圖,而且所有路徑的總長僅比使用時間複雜度為O(n3)之近似演算法的結果平均多出1.6%,以及比精確演算法多出4.7%。


    Modern day civilization highly relies on all kinds of interconnection networks, such as VLSI (Very Large Scale Integrated Circuit) wire connections, power line networks, communication networks, internet connections, etc., and the scale of these networks are growing exponentially. Unfortunately there is no practically feasible optimal and near-optimal algorithm for large scale reliable network generation and hence most are either over or under designed. Therefore, we propose in the paper an efficient near-optimal k-connected robust interconnection network (k-RN) generation algorithm, CORONA, which can produce highly reliable networks which can tolerate k - 1 connection open faults. The proposed algorithm is of efficient O(n log n)-time complexity and can minimize total connection length. As real-world networks often evolve through actual use, we also design an incremental CORONA for cases of vertex insertion or deletion to an existing k-RN. Experimental results show that CORONA can effectively handle large networks with 100k vertices in merely a few minutes each. The quality in terms of total connection length of CORONA is verified to be within 1.6% to a well-known O(n3) 1.5-approximation algorithm, and within 4.7% to an exact optimum solution on average.

    Table of Contents ABSTRACT i ACKNOWLEDGEMENT iii LIST OF TABLES v LIST OF FIGURES vi 1. Introduction 1 2. Preliminaries 3 2.1 k-Connected robust interconnection network 3 2.2 Network formation 4 2.3 Determining minimum degree of redundancy 5 2.4 Previous work on generating minimal weight k-RNs 7 3. The CORONA algorithm 9 3.1 Inspirations and initiatives 9 3.2 Theorems 10 3.3 Algorithm flow 14 3.3.1 Minimal-edge k-RN 15 3.3.2 Minimal-weight k-RN 17 3.4 Time complexity analysis 18 3.5 Discussion 19 4. Extended use of CORONA 20 4.1 Vertex insertion for k-RN 20 4.2 Vertex deletion for k-RN 22 5. Experimental results 24 6. Conclusions 28 BIBLIOGRAPHY 29  

    BIBLIOGRAPHY

    [1] S. Shan. “NCC takes action after Internet problems”. Internet: http://www.taipeitimes.com/News/taiwan/archives/2013/02/27/2003555840, Feb. 27, 2013 [July 17, 2015].
    [2] R. Miller. “Ballmer: Microsoft has 1 Million Servers”. Internet: http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/, July 15, 2013 [July 17, 2015]
    [3] M. Liotine, “Reliability Metrics,” in Mission-Critical Network Planning, Norwood, Artech House, 2003, ch. 3, sec. 2, pp. 41–42.
    [4] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W.H. Freeman and Company, San Francisco, 1979
    [5] E.L. Lawler, J.K. Lenstra, D.B. Shymoys: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley and Sons, New York, 1985
    [6] N. Christofides, “Worst-case analysis of a new heuristic for the travelling salesman problem,” Technical Report No. 388, CMU, 1976
    [7] G. N. Federickson, and J. F. Jaja, “On relationship between biconnectivity augmentation ad the traveling salesman problem,” Theoretical Computer Science, 19:189-201, 1982
    [8] S. Khuller and U. Vishkin, “Biconnectivity approximations and graph carvings,” J. ACM, 41(2):214-235, 1994
    [9] T. Watanabe, T. Mashima, and S. Taoka, “The k-edge-connectivity augmentation problem of weighted graphs,’ ISAAC, Nagoya, 1992, pp. 31-40
    [10] J. Cheriyan and R. Thrimella, “Approximating minimum-size k-connected spanning subgraphs via matching,” SIAM. 30(2):528-560, 2000.
    [11] T. Watanabe, T. Mashima, and S. Taoka, “Approximation algorithms for minimum-cost augmentation to k-edge-connect a multigraph,” ISCAS, 1993, vol. 4, pp. 2556-2559
    [12] D.F. Hsu, X.D. Hu, and G.H. Lin, “On Minimum-Weight k-Edge Connected Steiner Networks on Metric Spaces,” Graphs and Combinatorics, 2000, pp.275-284
    [13] H.N. Gabow, M.X. Goemans, E. Tardos and D.P. Williamson, “Approximating the smallest k-edge connected spanning subgraph by LP-roundings,” in Proc. SODA, 2005, pp. 562-671
    [14] K. Jain, “A factor 2 approximation algorithm for the generalized Steiner network problem,” Combinatorica, vol. 21, issue 1, 2001, pp. 39–60.
    [15] David Pritchard, “K-Edge-Connectivity: Approximation and LP Relaxation,” WAOA, 2010, pp. 225-236.
    [16] T. Mashima and T. Watanabe, “Approximation Algorithms for the k-Edge-Connectivity Augmentation Problem,” ISCAS, 1995, pp. 155-158
    [17] S. Dobrev, E. Kranakis, D. Krizanc O. Morales Ponce and L. Stacho, “Approximating the edge length of 2-edge connected planar geometric graphs on a set of points,” in Proc. LATIN, 2012, pp. 255-266.
    [18] M. Al-Jubeh, M. Ishaque, K. R´edei, D.L.Souvaine, and C.D. T´oth, “Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs,” ISAAC, 2009, pp 902-912
    [19] H. Zhou. “Efficient Steiner Tree Construction Based on Spanning Graphs,” Graphs and Combinatorics, 2000, pp. 275-284

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE