簡易檢索 / 詳目顯示

研究生: 郭于銘
Kuo, Yu-Ming
論文名稱: 軟磁鐵鈷鉿氧/氧化鋁多層膜與鐵鉿氮薄膜之開發及其磁性質對功率電感特性之影響
Soft magnetic FeCoHfO/AlOx multilayers and FeHfN thin films for applications in power inductors
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 金重勳
陳士堃
李志偉
吳芳賓
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 106
中文關鍵詞: 多層膜磁異向性場微結構導磁率電感值飽和電流電流漣波直流-直流轉換器
外文關鍵詞: Multilayers, Anisotropy, Microstructure, Permeability, Inductance, Saturation current, Current ripple, DC-DC converter
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊與可攜式產品之微型化,傳統的電感元件已無法滿足微小化的需求。為了縮小電感尺寸並提升直流-直流轉換器之轉換效率,需利用高的感值與飽和電流來達成此一目標。因此本研究藉由高導磁率鐵磁薄膜來提升功率電感之感值與飽和電流。
    本研究運用dc-反應磁控濺鍍鍍製FeCoHfO/AlOx多層膜與FeHfN薄膜。在FeCoHfO/AlOx系統中,由於AlOx的置入提高了多層膜之導磁率進而提升功率電感的感值。此外FeHfN薄膜中,N2流量的增加會造成FeHfN薄膜從非晶相轉變成結晶相,因而影響FeHfN薄膜本身之磁特性與導磁率。在N2流量為1.2 sccm時,具有較高的導磁率(μ’ > 600 在100 MHz)。將此FeHfN薄膜與功率電感整合後,感值大幅提升將近13 %,飽和電流有超過2 A的表現。
    為了進一步與直流-直流轉換器整合,因而挑選較高導磁率之FeHfN薄膜與功率電感結合。整合後高感值及高飽和電流之表現有效的抑制電流漣波,並提升直流-直流轉換器之轉換效率。因此FeHfN薄膜在電感與直流-直流轉換器之微型化應用上具有相當的潛力,可望被廣泛運用。


    Driven by the modern trend for miniaturization of the wireless communication and portable products, conventional inductors fail to fulfill the requirement. In order to miniaturize the dimension of power inductors and to increase conversion efficiency of DC-DC converters, high inductance and saturation current are necessary. Hence, it is crucial to employ high-permeability films to enhance the inductance and saturation current of power inductors.
    In this study, FeCoHfO/AlOx multilayers and FeHfN films were fabricated by dc reactive magnetron co-sputtering. Inserting the AlOx layers increases the permeability of the multilayers, which is beneficial to raise the inductance nearly 5 %. In addition, increasing N2 flow alters the structure of FeHfN films from amorphous-like to crystalline phases, affecting magnetic properties and permeability. With the optimum N2 flow of 1.2 sccm, high permeability (μ’ > 600 at 50 MHz) was obtained. The inductance and saturation current made of FeHfN films were greatly enhanced around 13 % and exceeded 2 A, respectively.
    To further integrate into DC-DC converters, FeHfN films were selected alongside with the power inductors. After integration, the higher inductance and saturation current efficiently suppresses the current ripple and enhanced the conversion efficiency of DC-DC converters. Therefore, the FeHfN films are promising for miniaturization of the inductors and DC-DC converters.

    Abstract (in Chinese)…………………………………………………………... Ⅰ Abstract………………………………………………………………................ Ⅱ Contents…………………………………………………………………............ Ⅲ List of Tables………………………………………………………………….... Ⅶ Figures Caption………………………………………………………………... Ⅷ Chapter 1 Introduction………………………………….…………………….. 1 1.1 Background……………………………………....................................... 1 1.2 Ferromagnetic thin films………………………………........................... 3 1.3 Motivation and objectives…………………………................................. 4 1.4 Thesis overview…………………………................................................ 7 Chapter 2 Literature Survey………………………………………………….. 10 2.1 Magnetic materials……………………………………............................ 10 2.1.1 Magnetic hysteresis…………………………………………………………...... 10 2.1.2 Magnetic anisotropy……………………………………………………………. 12 2.1.3 Grain-size dependence of coercivity and permeability………………………… 15 2.1.4 Magnetic domain…………………………………….......................................... 17 2.1.5 Initial magnetization curve……………………………………............... 19 2.2 Inductor characterization…………………………………...................... 19 2.2.1 Inductance………………………………………………………………………. 19 2.2.2 Quality factor…………………………………………………………………... 21 2.2.3 Loss mechanisms………………………………………………………………. 22 2.2.3.1 Eddy currents…………………………………………………………… 22 2.2.3.2 Skin effect………………………………………………………………. 23 2.2.3.3 Proximity effect…………………………………………………………. 24 2.2.4 Saturation current………………………………………………………………. 24 2.3 Application of soft magnetic thin films in inductor………...................... 26 2.3.1 Material requirements…………………………………………………………… 26 2.3.2 Magnetic core materials……………………………………………………….... 27 2.3.3 Nanocrystalline soft magnetic materials……………………………………….. 29 2.3.4 Micro inductors designed with a magnetic thin film…………………………... 31 Chapter 3 Experimental Procedure…………………………………………… 34 3.1 Fabrication of magnetic films………………………………………....... 34 3.1.1 Deposition of FeCoHfO/AlOx multilayered films…………………………. 35 3.1.2 Deposition of FeHfN thin films……………………………………………….. 36 3.2 Design and integration of planar spiral inductors and DC-DC converters……………………………………………………………….. 36 3.3 Measurement and analysis…………………………………………….... 39 3.3.1 Composition analysis…………………………………………………………... 39 3.3.2 Phase identification and microstructure investigation…………………………. 39 3.3.3 Magnetic domain structure investigation………………………………………. 39 3.3.4 Evaluation of residual stress……………………………………………………. 40 3.3.5 Measurement of magnetic properties…………………………………………... 41 3.3.6 Permeability characterization…………………………………………............... 42 3.3.7 Resistivity measurement and thickness of films……………………………….. 43 3.3.8 Analysis of device properties…………………………………………………... 43 Chapter 4 Results and Discussion…………………………………………….. 44 4.1 Effects of the stacking layers on permeability characteristics and electrical properties in FeCoHfO/AlOx multilayered films…...................................................................................................... 44 4.1.1 Microstructure of FeCoHfO/AlOx multilayers…………………………………. 44 4.1.2 Magnetic anisotropy and residual stress of multilayers………………………... 46 4.1.3 Domain structure of FeCoHfO/AlOx multilayers……………………………… 49 4.1.4 Resistivity analysis of FeCoHfO/AlOx multilayers……………………………. 51 4.1.5 Permeability behavior of FeCoHfO/AlOx multilayers…………………………. 53 4.2 Integration of FeCoHfO/AlOx multilayered films with power inductors……………………………………………………………….. 56 4.2.1 Inductance analysis of power inductors………………………………………... 56 4.2.2 Saturation current properties of power inductors………………………………. 57 4.3 Influence of the nitrogen contents on the permeability characteristics and soft magnetic properties of FeHfN films………………………………………………………………………………… 61 4.3.1 Composition evolution of FeHfN films………………………………………... 61 4.3.2 Microstructure analysis of FeHfN films……………………………………….. 61 4.3.3 Saturation magnetization and resistivity of FeHfN films……………………… 67 4.3.4 Magnetic anisotropy and coercivity of FeHfN films…………………………... 68 4.3.5 High-permeability characteristics of FeHfN films…………………………….. 71 4.4 Application of FeHfN soft magnetic films to power inductors……………………………………………………………….. 74 4.4.1 Inductance and quality factor analysis of power inductors…………………….. 74 4.4.2 Saturation current properties of power inductors………………………………. 76 4.5 Integration of FeHfN power inductors with DC-DC converters……………………………………………………………… 81 4.5.1 Inductance and saturation current properties analysis of power inductors (PI14) …………………………………………....... ………………………….. 81 4.5.2 Current ripple and conversion efficiency analysis of DC-DC Converters……... 84 Chapter 5 Conclusions………………………………………………………… 88 5.1 Conclusions of this study……………………………………………….. 88 5.2 Suggested future works…………………………………………………. 90 References……………………………………………………………………… 92 List of Symbols………………………………………………………………… 100 個人簡歷……………………………………………………………………….. 103 Publication Lists……………………………………………………………….. 104 International Conference Presentation………………………………………. 106

    [1] T. O’Donnell, N. Wang, R. Meere, F. Rhen, S. Roy, D. O’Sullivan, C.
    O’Mathuna, 23rd Annual IEEE Conference on APEC, 1-4 (2008) 689.
    [2] R. Meere, T. O. Donnell, H. J. S. Bergveld, N. Wang, S. C. Mathuna,
    IEEE T. Power Electr. 24 (2009) 2212.
    [3] L. Y. Park, S. G. Kim, J. G. Koo, T. M. Roh, D. W. Lee, Y. S. Yang,
    J. Kim, ETRI J. 25 (2003) 270.
    [4] Z. Hayashi, Y. Katayama, M. Edo, H. Nishio, IEEE Trans. Magn. 39
    (2003) 3068.
    [5] H. Nakazawa, M. Edo, Y. Katayama, M. Gekinozu et al., IEEE Trans.
    Magn. 36 (2000) 3518.
    [6] M. Brunet, T. O’Donnell, L. Baud, N. Wang et al., IEEE Trans. Magn. 38 (2002) 3174.
    [7] A. W. Lotfi, M A. Wilkowski, Proceedings of the IEEE 89 (2001) 833.
    [8] J. C. P. Liu, N. K. Poon, M. H. Pong, C. K. Tse, IEEE T. Power Electr. 22 (2007) 1956.
    [9] C. S. Leu, M. H. Li, IEEE T. Ind. Electron. 57 (2010) 2018.
    [10] S. Tanabe, Y. Shiraki, K. Itoh, M. Yamaguchi, K. Arai, IEEE Trans.
    Magn. 35 (1999) 3580.
    [11] Y. Katauama, S. Sugahara, H. Nakazawa, M. Edo, Power Electronics Specialists Conference (PESC) 2000 IEEE 31st Annual, 3 (2000) 1485.
    [12] Y. Sasaki, S. Morita, T. Hatanai, A. Makino, T. Sato, K. Yamasawa, Nanostruct. Mater. 8 (1997) 1025.
    [13] D. S. Gardner, G. Schrom, P. Hazucha, F. Paillet, et al., J. Appl.
    Phys. 103 (2008) 07E927-1.
    [14] M. Yamaguchi, K. H. Kim, S. Ikedaa, J. Magn. Magn. Mater. 304
    (2006) 208.
    [15] M. Yamaguchi, K. Yamada, K. H. Kim, IEEE Trans. Magn. 42 (2006) 3341.
    [16] Y. Zhou, Z. M. Zhou, Y. Cao, X. Y. Gao, W. Ding, J. Magn. Magn.
    Mater. 320 (2008) e963.
    [17] D. W. Lee, K. P. Hwang, S. X. Wang, IEEE Trans. Magn. 44 (2008) 4089.
    [18] S. Bae, Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, B. C. Choi, G. W. Donohoe, IEEE Trans. Magn. 45 (2009) 4773.
    [19] D. S. Gardner, G. Schrom, P. Hazucha, F. Paillet, T. Karnik, S. Borkar, IEEE Trans. Magn. 43 (2007) 2615.
    [20] M. Yamaguchi, K. Suezawa, K. I. Arai, et al., J. Appl. Phys. 85
    (1999) 7919.
    [21] T. Sato, E. Komai, K. Yamasawa, IEEE Trans. Magn. 33 (1997)
    3310.
    [22] S. Chikazumi, Physics of Magnetism, John Wiley (1964) 329.
    [23] I. Fergen, K. Seemann, A. V. D. Weth, A. Schppuen, J. Magn. Magn.
    Mater. 242 (2002) 146.
    [24] K. Seemann, H. Leiste, V. Bekker, J. Magn. Magn. Mater. 283 (2004) 310.
    [25] G. Rieger, G. Rupp, G. Gieres, et al., J. Appl. Phys. 91 (2002) 8447.
    [26] M. Yamaguchi, Y. Miyazawa, K. Kaminish, et al., J. Magn. Magn.
    Mater. 268 (2004) 170.
    [27] V. Korenivski, R. B. Van Dover, IEEE Trans. Magn. 34 (1998) 1375.
    [28] V. Korenivski, J. Magn. Magn. Mater. 215 (2000) 800.
    [29] N. X. Sun, S. X. Wang, J. Appl. Phys. 92 (2002) 1477.
    [30] A. R. Chezan, C. B. Craus, N. G. Chechenin, et al. Phys. Stat. Sol.
    (a) 189 (2002) 833.
    [31] T. J. Klemmer, K. A. Ellis, L. H. Chen, B. Van Dover, S. Jin, J. Appl.
    Phys. 87 (2000) 830.
    [32] C. H. Lee, D. H. Shin, D. H. Ahn, et al, J. Appl. Phys. 85 (1998)
    4898.
    [33] L. H. Chen, H. K. Chen, C. T. Hsieh, et al., J. Appl. Phys. 91 (2002)
    8450.
    [34] X. L. Tang, H. W. Zhang, H. Su, X. D. Jiang, J. Magn. Magn. Mater.
    270 (2004) 84.
    [35] G. D. Lu, H. W. Zhang, J. Q. Xiao, et al., J. Appl. Phys. 109 (2011)
    07A327.
    [36] S. Ohnuma, N. Kobayashi, T. Masumoto, J. Appl. Phys. 85 (1999)
    4574.
    [37] L. Li, A. M. Crawford, S. X. Wang, A. F. Marshall, M. Mao, T.
    Schneider, R. Bubber, J. Appl. Phys. 97 (2005) 10F907.
    [38] N. D. Ha, M. H. Phan, C. O. Kim, Nanotechnology 18 (2007)
    155705.
    [39] K. Ikeda, K. Kobayashi, K. Ohta, et al., IEEE Trans. Magn. 39 (2003) 3057.
    [40] D. Y. Kim, S. S. Yoon, B. P. Rao, C. G. Kim, K. H. Kim, M. Takahashi, IEEE Trans. Magn. 44 (2008) 3115.
    [41] T. Sato, Y. Miura, S. Matsumura, K. Yamasawa, S. Morita, Y. Sasaki,
    T. Hatanai, A.Makino, J. Appl. Phys. 83 (1998) 6658.
    [42] C. Y. Chou, P. C. Kuo, Y. D. Yao, Y. H. Fang, N. W. Cheng, S. C.
    Chen, A. C. Sun, J. Magn. Magn. Mater. 45 (2006) 4021.
    [43] G. Herzer, IEEE Trans. Magn. 26 (1990) 1397.
    [44] Y. Hayakawa, A. Makino, Nanostruct. Mater. 6 (1995) 989.
    [45] K. Yamauchi, Y. Yoshizawa, Nanostruct. Mater. 6 (1995) 247.
    [46] K. H. Kim, D. W. Yoo, J. H. Jeong, et al., J. Magn. Magn. Mater. 239
    (2002) 579.
    [47] B. Viala, S. Coudrc, A. S. Royet, P. Ancey, G. Bouche, IEEE Trans.
    Magn. 41 (2005) 3544.
    [48] K. H. Kim, H. W. Choi, J. Kim, et al., IEEE Trans. Magn. 36 (2000)
    2656.
    [49] S. Couderc, B. Viala, P. Ancey, G. Bouche, R. Pantel, IEEE Trans.
    Magn. 41 (2005) 3319.
    [50] K. Ikeda, K. Kobayashi, M. Fujimoto, J. Appl. Phys. 92 (2002) 5395.
    [51] Y. G. Ma, C. K. Ong, J. Phys. D: Appl. Phys. 40 (2002) 3286.
    [52] J. Y. Song, J. J. Lee, S. H. Han, H. J. Kim, J. Kim, J. Appl. Phys. 83
    (1998) 6652.
    [53] Y. Hayakawa, A. Makino, H. Fujimori, A. Inoue, J. Appl. Phys. 81
    (1997) 3747.
    [54] J. Y. Song, J. J. Lee, S. H. Han, H. J. Kim, J. Appl. Phys. 83 (1998)
    6652.
    [55] K. H. Kim, Y. H. Kim, J. Kim, S. H. Han, H. J. Kim, J. Magn. Magn. Mater. 215-216 (2000) 368.
    [56] B. D. Cullity, Introduction to Magnetic Materials, 2 nd Edition,
    Wiley-IEEE Press (2008).
    [57] G. Herzer, Scripta Metall. Mater. 33 (1995) 1741.
    [58] K. Suzuki, G. Herzer, et al., J. Magne. Magn. Mater. 177 (1998) 949.
    [59] G. Herzer, IEEE Trans. Magn. 25 (1989) 3327.
    [60] R. Albert, J.J. Becket, M.C. Chi, J. Appl. Phys. 49 (1978) 1653.
    [61] R. M. Bozorth, Ferromagnetism, Princeton, D. Van Nostrand
    Company, ch. 18 (1951) 811.
    [62] M. Farle, Rep. Prog. Phys. 61 (1998) 755.
    [63] N. Saito, H. Fuliwara, J. Phys. Soc. Jpn. 19 (1964) 1116.
    [64] O. Acher, C. Boscher, B. Brulé, G. Perrin, et al., J. Appl. Phys. 81
    (1997) 4057.
    [65] I. Bahl, Lumped Elements for RF and Microwave Circuits, Artech
    House, INC. (2003).
    [66] K. O, IEEE J. Solid-St. Circ. 33 (1998) 1249.
    [67] J. Craninckx, M. S. J. Steyaert, IEEE J. Solid-St. Circ. 32 (1997)
    736.
    [68] C. P. Yue, S. S. Wong, IEEE T. Electron Dev. 47 (2000) 560.
    [69] S. Jin, W. Zhu, R.B. vanDover, T.H. Tiefel, V. Korenivski, Appl.
    Phys. Lett. 70 (1997) 3161.
    [70] A. V. D. Bossche, V. C. Valchev, Taylor & Francis, ch. 3 (2005) 98.
    [71] A. Makino, T. Hatanai, A. Inoue, T. Masumoto, Mat. Sci. Eng.
    A-Struct. 226 (1997) 594.
    [72] Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64 (1988)
    6044.
    [73] C. H. Ahn, M. G. Allen, IEEE T. Ind. Electron. 45 (1998) 866.
    [74] W. A. Roshem, D. E. Turcotte, IEEE Trans. Magn. 24 (1988) 3213.
    [75] W. A. Roshem, IEEE Trans. Magn. 26 (1990) 270.
    [76] J. I. Goldstein, Scanning electron microscopy and x-ray
    microanalysis, 2nd Edition, Plenum Press (1992).
    [77] G. G. Stoney, Proc. R. Soc. London, Ser. A. 82 (1909) 172.
    [78] M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai, M. Ledieu, J.
    Magn. Magn. Mater. 242 (2002) 970.
    [79] D. Pain, M. Ledieu, O. Acher, A. L. Adenot, F. Uverger, J. Appl.
    Phys. 85 (1999) 5151.
    [80] S. Thomas, S. H. Al-Harthi, D. Sakthikumar, I. A. Al-Omari, R. V.
    Ramanujan, Y. Yoshida, et al., J. Phys. D: Appl. Phys. 41 (2008)
    155009.
    [81] N. X. Sun, Q. F. Xiao, B. York, J. Appl. Phys. 97 (2005) 10F906.
    [82] X. Feng, Y. Huang, H. Jiang, D. Ngo, A. J. Rosakis, J. Mech. Mater.
    Struct. 1 (2006) 1041.
    [83] D. G. Liu, J. P. Tu, C. D. Gu, R. Chen, C. F. Hong, Thin Solid Films
    519 (2011) 4842.
    [84] S. Wang, J. Zhu, J. Wang, X. Yin, X. Han, Thin Solid Films 519
    (2011) 4906.
    [85] D. G. Liu, J. P. Tu, H. Zhang, R. Chen, C. D. Gu, Surf. Coat. Tech.
    205 (2011) 3080.
    [86] P. Zou, W. Yu, J. A. Bain, IEEE Trans. Magn. 38 (2002) 3501.
    [87] R. F. Jiang, C. H. Lai, J. Appl. Phys. 97 (2005) 10N302.
    [88] S. Ohnuma, H. Fujimori, S. Mitani, T. Matsumoto, J. Appl. Phys. 79
    (1996) 5130.
    [89] J. Y. Park, M. G. Allen, IEEE T. Electron. Pa. M. 23 (2000) 48.
    [90]B. D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed.,
    Prentice Hall, 2001.
    [91] M. Senda, O. Ishii, IEEE Trans. Magn. 30 (1994) 155.
    [92] S. Ge, D. Yao, M. Yamaguchi, X. Yang, H. Zuo, T. Ishii, D. Zhou, F.
    Li, J. Phys. D: Appl. Phys. 40 (2007) 3660.
    [93] R. W. Gao, W. C. Feng, H. Q. Liu, B. Wang, W. Chen, G. B. Han, et
    al., J. Appl. Phys. 94 (2003) 664.
    [94] M. H. Jung, J. W. Kim, E. J. Yun, Jpn. J. Appl. Phys. 39 (2000) 4772.
    [95] J. P. Michel, Y. Lamy, A. S.Royet, B. Viala, IEEE Trans. Magn. 42
    (2006) 3368.
    [96] Y. Sasaki, S. Morita, T. Hatanai, A. Makino, T. Sato, K. Yamasawa, Nanostruct. Mater. 8 (1997) 1025.
    [96] Y. Sasaki, S. Morita, T. Hatanai, A. Makino, T. Sato, K. Yamasawa, Nanostruct. Mater. 8 (1997) 1025.
    [97] C. H. Lien, "The fabrication of low pass filter on polyimide substrate
    by imprinting technology ", National Tsing Hua University for the
    Degree of Master, 2007.
    [98] S. Y. Chou, P. R. Krauss, P. J. Renstrom, Appl. Phys. Lett. 67 (1995)
    3114.
    [99] S. Ge, D. Yao, M. Yamaguchi, X. Yang, H. Zuo, T. Ishii, D. Zhou, F.
    Li, J. Phys. D: Appl. Phys. 40 (2007) 3660.
    [100] Y. Liu, C. Y. Tan, Z. W. Liu, C. K. Ong, J. Appl. Phys. 101 (2007)
    023912.
    [101] M. Ohnuma, K. Hono, H. Onodera, S. Ohnuma, H. Fujimori, J. S.
    Pedersen, J. Appl. Phys. 87 (2000) 817.
    [102] S. Ohnuma, H. J. Lee, N. Kobayashi, H. Fujimori, T. Masumoto,
    IEEE Trans. Magn. 37 (2001) 2251.
    [103] S. Ohnuma, H. Fujimori, T. Masumoto, X. Y. Xiong, D. H. Ping, K.
    Hono, Appl. Phys. Lett. 82 (2003) 946.
    [104] S. Ohnuma, H. Fujimori, S. Furukawa, F. Matsumoto, T.
    Masumoto, Mater. Sci. Eng., A 182 (1994) 892.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE