研究生: |
葉秀倫 Yeh, Hsiu-Len |
---|---|
論文名稱: |
化學氣相沉積法合成垂直性多壁奈米碳管應用於奈米發電機之研究 The Study of Synthesizing Vertical Aligned Multi-walled Carbon Nanotubes by Chemical Vapor Deposition and Its Application for Nanogenerator |
指導教授: |
蔡春鴻
Tsai, Chuen-Horng 柳克強 Leou, Keh-Chyang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 奈米發電機 、多壁奈米碳管 、奈米碳管 、壓電效應 、化學氣相沉積法 、楊氏係數 |
外文關鍵詞: | nanogenerator, multi-walls carbon nanotubes, carbon nanotubes, Piezoelectric effect, Chemical Vapor Deposition, Young's modulus |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nanogenerator這個嶄新的名詞由Z.L. Wang等人在2006年時在Science雜誌所提出,這個新的元件主要是利用壓電材料所具有的壓電效應,經過外力使其產生形變後,因為材料正負電荷中心的暫時分離,使得壓電材料的拉伸端具有正壓電電位,壓縮端具有負壓電電位,當碰觸到電極時,則會因為電位差而驅使電荷載子流到外部電路,進而輸出電壓及電流值。在人體身上有很多能量足以驅動nanogenerator,例如:肌肉的拉伸、血液的流動、聲音的聲波…等,因此將這種新的發電元件有很大的應用面。
本研究中,試圖設計一個全新的nanogenerator結構,用以改善文獻中nanogenerator輸出電壓、電流太小的缺點。因此設計出一對一的奈米發電組,也就是利用一根氧化鋅奈米線配上一個微電極,其好處是確保所有氧化鋅在彎曲產生壓電效應時,都能夠接觸到微電極順利的將電壓、電流輸出,且解決了氧化鋅奈米線還未彎曲即被電極卡住無法動彈的問題。而微電極選擇利用多壁奈米碳管(multi-wall carbon nanotubes, MWNTs),原因是因為其可定位成長在氧化鋅奈米線旁,所以無論氧化鋅的高度皆不相同,也可讓每根氧化鋅彎曲時皆可以碰觸到MWNTs,且由於MWNTs的電阻率很低,因此可以使輸出電流的衰退減少。
研究中利用CCVD的方式,配合在製程時通入氨氣來輔助MWNTs往垂直於基板方向成長,因此成功的在金屬電極上成長出具有垂直特性的MWNTs。
因為nanogenerator的驅動力設定為人體中血液的衝擊力,因此MWNTs和氧化鋅奈米線的楊氏係數對此元件的成功與否非常重要,具有高剛性的MWNTs才可以承受得住血液的衝擊而不被彎曲,所以研究中試圖自行設計了量測楊氏係數的新方法,由本實驗室的多探針奈米電性量測系統(Multi-probe Nano-electronics measurement system, MPNEM),利用探針施加偏壓產生靜電力吸引MWNTs的過程中,經由理論推導計算,成功的得到MWNTs的楊氏係數平均值為0.92 ± 0.28 Tpa,其值約為氧化鋅奈米線(楊氏係數約為29GPa)的三十倍。
MWNTs的電阻值亦是我們關心的另一個重點,所以我們在真空下利用MPNEM系統量測電阻率,對於由CCVD製程成長出垂直性良好的MWNTs,其電阻率為24.41 μΩ.m。
最後結合了氧化鋅奈米線以及具有垂直性的MWNTs所形成的nanogenerator,進行發電輸出的實驗,實驗結果得知我們輸出的電流值為0.8 pA ~ 3.5 pA,因此證明這個新設計的nanogenerator確實是可以運作,且成功的解決了電極與氧化鋅之間存在著Schottky barrier的問題。
參考文獻
[1] Z. L. Wang and J. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays," Science, vol. 312, pp. 242-246, 2006.
[2] Y. Qin, X. Wang, and Z. L. Wang, "Microfibre-nanowire hybrid structure for energy scavenging," Nature, vol. 451, pp. 809-813, 2008.
[3] M.-P. Lu, J. Song, M.-Y. Lu, M.-T. Chen, Y. Gao, L.-J. Chen, and Z. L. Wang, "Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays," Nano Letters, vol. 9, pp. 1223-1227, 2009.
[4] J. S. Y. D. S.-Y. L. Z. L. W. Yi-Feng Lin, "Alternating the Output of a CdS Nanowire Nanogenerator by a White-Light-Stimulated Optoelectronic Effect," Advanced Materials, vol. 20, pp. 3127-3130, 2008.
[5] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-Current Nanogenerator Driven by Ultrasonic Waves," Science, vol. 316, pp. 102-105, April 6, 2007 2007.
[6] J. Liu, P. Fei, J. Zhou, R. Tummala, and Z. L. Wang, "Toward high output-power nanogenerator," Applied Physics Letters, vol. 92, p. 173105, 2008.
[7] H. W. Kroto, J. R. Heath, S. C. O. Brien, R. F. Curl, and R. E. Smalley, "C 60: buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
[8] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Atomic structure and electronic properties of single-walled carbon nanotubes," Nature, vol. 391, pp. 62-64 1998.
[9] W. Hoenlein, F. Kreupl, G. S. Duesberg, A. P. Graham, M. Liebau, R. Seidel, and E. Unger, "Carbon nanotubes for microelectronics: status and future prospects," Materials Science and Engineering: C, vol. 23, pp. 663-669, 2003.
[10] J. Liu, X. Li, A. Schrand, T. Ohashi, and L. Dai, "Controlled Syntheses of Aligned Multi-Walled Carbon Nanotubes: Catalyst Particle Size and Density Control via Layer-by-Layer Assembling," Chemistry of Materials, vol. 17, pp. 6599-6604, 2005.
[11] M. Terrones, "SCIENCE AND TECHNOLOGY OF THE TWENTY-FIRST CENTURY: Synthesis, Properties, and Applications of Carbon Nanotubes," Annual Review of Materials Research, vol. 33, pp. 419-501, 2003.
[12] Y. Saito and S. Uemura, "Field emission from carbon nanotubes and its application to electron sources," Carbon, vol. 38, pp. 169-182, 2000.
[13] A. M. Morales and C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science, vol. 279, pp. 208-211, January 9, 1998 1998.
[14] H. S. P. Wong, J. Appenzeller, V. Derycke, R. Martel, S. Wind, and P. Avouris, "Carbon nanotube field effect transistors - fabrication, device physics, and circuit implications," in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 370-500 vol.1.
[15] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
[16] G. D. M. S. Dresselhaus, and P. Avouris, "Carbon Nanotubes:Synthesis, Structure, Properties, and Applications," Berlin: Springer, 2002.
[17] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, "Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes," Science, vol. 298, pp. 2361-2366, December 20, 2002 2002.
[18] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Electronic structure of chiral graphene tubules," Applied Physics Letters, vol. 60, pp. 2204-2206, 1992.
[19] M. P. Anantram and F. Leonard, "Physics of carbon nanotube electronic devices," Reports on Progress in Physics, vol. 69, pp. 507-561, 2006.
[20] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Electronic structure of double-layer graphene tubules," Journal of Applied Physics, vol. 73, pp. 494-500, 1993.
[21] J. C. Charlier and J. P. Michenaud, "Energetics of multilayered carbon tubules," Physical Review Letters, vol. 70, p. 1858, 1993.
[22] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, "Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass," Science, vol. 282, pp. 1105-1107, November 6, 1998 1998.
[23] Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal, and P. N. Provencio, "Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition," Applied Physics Letters, vol. 73, pp. 3845-3847, 1998.
[24] M. Katsura, K. Nishimaki, T. Nakagawa, T. A. Yamamoto, M. Hirota, and M. Miyake, "Thermodynamics of the formation of CH4 by the reaction of carbon materials by a stream of NH3," Journal of Nuclear Materials, vol. 258-263, pp. 839-842, 1998.
[25] G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim, "Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition," Journal of Applied Physics, vol. 91, pp. 3847-3854, 2002.
[26] M. Jung, K. Y. Eun, Y.-J. Baik, K.-R. Lee, J.-K. Shin, and S.-T. Kim, "Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2," Thin Solid Films, vol. 398-399, pp. 150-155, 2001.
[27] J.-H. Han, S. H. Choi, T. Y. Lee, J.-B. Yoo, C.-Y. Park, H. J. Kim, I.-T. Han, S. Yu, W. Yi, G. S. Park, M. Yang, N. S. Lee, and J. M. Kim, "Effects of growth parameters on the selective area growth of carbon nanotubes," Thin Solid Films, vol. 409, pp. 126-132, 2002.
[28] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, "Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition," Journal of Applied Physics, vol. 90, pp. 5308-5317, 2001.
[29] J.-H. Han, C. H. Lee, D.-Y. Jung, C.-W. Yang, J.-B. Yoo, C.-Y. Park, H. J. Kim, S. Yu, W. Yi, G. S. Park, I. T. Han, N. S. Lee, and J. M. Kim, "NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition," Thin Solid Films, vol. 409, pp. 120-125, 2002.
[30] H. Cui, O. Zhou, and B. R. Stoner, "Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition," Journal of Applied Physics, vol. 88, pp. 6072-6074, 2000.
[31] C. J. Lee and J. Park, "Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition," Applied Physics Letters, vol. 77, pp. 3397-3399, 2000.
[32] C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, "Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition," Applied Physics Letters, vol. 77, pp. 2767-2769, 2000.
[33] Z. Y. Juang, I. P. Chien, J. F. Lai, T. S. Lai, and C. H. Tsai, "The effects of ammonia on the growth of large-scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method," Diamond and Related Materials, vol. 13, pp. 1203-1209, 2004.
[34] 莊鎮宇, "國立清華大學 工程與系統科學研究所博士論文," 中華民國九十三年五月.
[35] X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, "Dual-mode mechanical resonance of individual ZnO nanobelts," Applied Physics Letters, vol. 82, pp. 4806-4808, 2003.
[36] Z. L. Wang, Z. R. Dai, R. Gao, and J. L. Gole, "Measuring the Young's modulus of solid nanowires by in situ TEM," J Electron Microsc (Tokyo), vol. 51, pp. S79-85, March 27, 2002 2002.
[37] J. Song, X. Wang, E. Riedo, and Z. L. Wang, "Elastic Property of Vertically Aligned Nanowires," Nano Letters, vol. 5, pp. 1954-1958, 2005.
[38] E. W. Wong, P. E. Sheehan, and C. M. Lieber, "Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes," Science, vol. 277, pp. 1971-1975, September 26, 1997 1997.
[39] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, "Exceptionally high Young's modulus observed for individual carbon nanotubes," Nature, vol. 381, pp. 678-680, 1996.
[40] H. D. W. O. Lourie, "Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy," journal of materials research, vol. 13, p. 5, 1998.
[41] B. Lukic, J. W. Seo, R. R. Bacsa, S. Delpeux, F. Beguin, G. Bister, A. Fonseca, J. B. Nagy, A. Kis, S. Jeney, A. J. Kulik, and L. Forro, "Catalytically Grown Carbon Nanotubes of Small Diameter Have a High Young's Modulus," Nano Letters, vol. 5, pp. 2074-2077, 2005.
[42] J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. St鐼kli, N. A. Burnham, and L. Forr, "Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes," Physical Review Letters, vol. 82, p. 944, 1999.
[43] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science, vol. 292, pp. 1897-1899, June 8, 2001 2001.
[44] M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, "Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts," The Journal of Physical Chemistry B, vol. 107, pp. 659-663, 2002.
[45] http://www.webelements.com.
[46] Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics: Condensed Matter, vol. 16, pp. R829-R858, 2004.
[47] S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, "Field electron emission from polycrystalline GaN nanorods," Journal of Ceramic Processing Research, vol. 6, pp. 245-249, 2005.
[48] W. I. Park, G.-C. Yi, J.-W. Kim, and S.-M. Park, "Schottky nanocontacts on ZnO nanorod arrays," Applied Physics Letters, vol. 82, pp. 4358-4360, 2003.
[49] R. F. Pierret, "Semiconductor Device Fundamentals," Addison-Wesley, Reading, MA, p. chapter 14, 1996.
[50] J. Song, X. Wang, J. Liu, H. Liu, Y. Li, and Z. L. Wang, "Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer," Nano Letters, vol. 8, pp. 203-207, 2008.
[51] M.-C. Tsai, T.-K. Yeh, Z.-Y. Juang, and C.-H. Tsai, "Physical and electrochemical characterization of platinum and platinum-ruthenium treated carbon nanotubes directly grown on carbon cloth," Carbon, vol. 45, pp. 383-389, 2007.
[52] W. Y. Lee, C. H. Weng, Z. Y. Juang, J. F. Lai, K. C. Leou, and C. H. Tsai, "Lateral growth of single-walled carbon nanotubes across electrodes and the electrical property characterization," Diamond and Related Materials, vol. 14, pp. 1852-1856, 2005/12//.
[53] H. Ni and X. Li, "Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques," Nanotechnology, vol. 17, pp. 3591-3597, 2006.
[54] H. Hongo, F. Nihey, T. Ichihashi, Y. Ochiai, M. Yudasaka, and S. Iijima, "Support materials based on converted aluminum films for chemical vapor deposition growth of single-wall carbon nanotubes," Chemical Physics Letters, vol. 380, pp. 158-164, 2003.
[55] C. Emmenegger, J. M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Z□tel, and L. Schlapbach, "Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism," Carbon, vol. 41, pp. 539-547, 2003.
[56] B. Babic, J. Furer, S. Sahoo, S. Farhangfar, and C. Schonenberger, "Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes," Nano Letters, vol. 3, pp. 1577-1580, 2003.
[57] S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuyt, "A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes," Science, vol. 267, pp. 1334-1338, March 3, 1995 1995.
[58] H. Dai, E. W. Wong, and C. M. Lieber, "Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes," Science, vol. 272, pp. 523-526, April 26, 1996 1996.
[59] L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, "Quantum Transport in a Multiwalled Carbon Nanotube," Physical Review Letters, vol. 76, p. 479, 1996.