研究生: |
張鴻文 Chang, Hung-Wen |
---|---|
論文名稱: |
二維晶格波茲曼法之模型分析與圖形顯示卡計算之應用 Analysis of 2-D lattice Boltzmann models and GPU implementation |
指導教授: |
林昭安
Lin, Chao-An |
口試委員: |
李汶樺
Matthew R. Smith 何正榮 Ho, Jeng-Rong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 晶格波茲曼 、圖形顯示卡 |
外文關鍵詞: | Lattice Boltzmann, GPU |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, an analysis of the single-relaxation-time (SRT) and multi-relaxationtime (MRT) lattice Boltzmann model for 2-D simple flow problems is presented. This analysis provides another method to determine coefficients of equilibrium moments in the MRT model. Derived result indicates that commonly adopted boundary condition scheme for SRT model can be directly used on MRT model without any
modification. In addition, when analyzing the equation with the forcing term, a discrete forcing term is discovered from the derived equations as well. This discrete
forcing term will generate some artificial velocities and contaminates the final fluid field, if appropriate treatment is not applied. It shows that the discrete force effect can be eliminated by choosing a specific value of the relaxation parameter in both SRT and MRT model. However, the MRT model provides a much flexible option for
users to select relaxation time τ and accurate results are expected to be obtained.
The D2Q9 MRT lattice Boltzmann model is then utilized to simulate 2D deep cavity flows to locate the critical Reynolds number for cavity with different width depths. Simulation results indicate that for square cavity flow, the critical Reynolds number, where the transition phenomena occur, is located in the region between 8325 and 8350. For cavity flows with aspect ratio 2 and 3, the critical Reynolds number resides at 6025-6050, and 5725-5750, respectively.
MRT lattice Boltzmann simulation with GPU technology implementation is also presented in this thesis. 2D square cavity flow and 3D cubic cavity flow problems are selected as the test to investigate the parallel performance. Acceleration up to 20 times speedup can be achieved for both 2D and 3D simulation with current GPU program. However, since only global memory is used in present code, efforts for optimization are still required to improve the overall parallel efficiency.
[1] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann
model for simulation of magnethydrodynamics,” Phys. Rev. Lett. 67, 3776,
(1991).
[2] Y. H. Qian, D. d’Humi`eres, and P. Lallemand, “Lattice BGK models for Navier-
Stokes equation,” Europhys. Lett. 17, 479, (1992).
[3] S. Chen, and G. D. Doolen, “Lattice Boltzmann method for fluid flow,” Annu.
Rev. Fluid Mech. 30, 329, (1998).
[4] U. Firsch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-
Stokes equation,” Phys. Rev. Lett. 56, 1505, (1986).
[5] S. Wolfram, “Cellular automata fluids 1: Basic theory,” J. Stat. Phys. 45, 471
(1986).
[6] F. J. Higuera, S. Succi, and R. Benzi, “Lattice gas dynamics with enhanced
collisions,” Europhys. Lett. 9, 345, (1989).
[7] F. J. Higuera, and J. Jim´enez, “Boltzmann approach to lattice gas
simulations,” Europhys. Lett. 9, 663, (1989).
[8] P.L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes
in gases. I. Small amplitude processes in charged and neutral one-component
systems,” Phys. Rev. 94, 511, (1954).
[9] S. Harris, “An introduction to the theory of the Boltzmann equation,” Holt,
Rinehart and Winston, New York, (1971).
[10] H. Chen, S. Chen, and W. H. Matthaeus, “Recovery of the Navier-Stokes
equations using a lattice-gas Boltzmann method,” Phys. Rev. A. 45, 5339,
(1992).
[11] U. Frisch, D. d’Humi`eres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P.
Rivet, “Lattice gas hydrodymanics in two and three dimensions,” Complex
Syst. 1, 649, (1987).
[12] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,
“Comparison of spectral method and lattice Boltzmann simulations of twodimensional
hydrodynamics,” Phys. Fluids 6, 1285, (1994).
[13] G. R. McNamara, and G. Zanetti, “Use of the Boltzmann equation to simulate
lattice-gas automata,” Phys. Rev. Lett. 61, 2332, (1988).
[14] X. He, and L. S. Luo, “Theory of the lattice Boltzmann method: From the
Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56,
6811, (1997).
[15] X. He, and L. S. Luo, “A priori derivation of the lattice Boltzmann equation,”
Phys. Rev. E 55, 6333, (1997).
[16] D. d’Humi`eres, “Generalized lattice Boltzmann equation,” In Rarefied gas
dymanics - Theory and simulations, Progress in Astronautics and Aeronautics,
vol. 159, Shizgal BD,Weaver DP(eds). AIAA:Washington, DC, 45-458, (1992).
[17] P. Lallemand, and L. S. Luo, “Theory of the lattice Boltzmann method:
dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys. Rev.
E 61, 6546, (2000).
[18] T. I. Gombosi, “Gas kinetic theory,” Cambridge University Press, (1994).
[19] X. He, Q. Zou, L. S. Luo, and M. Dembo, “Analytic solutions of simple flows
and analysis of nonslip boundary conditions for the lattice Boltzmann BGK
model,” J. Stat. Phys. 87, 115, (1997).
[20] P. A. Skordos, “Initial and boundary conditions for the lattice Boltzmann
method,” Phys. Rev. E 48, 4823, (1993).
[21] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, “A consistent
hydrodynamics boundary condition for the lattice Boltzmann method,” Phys.
Fluids 7, 203, (1995).
[22] T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for
lattice Boltzmann simulations,” Phys. Fluids 7, 2928, (1995).
[23] S. Chen, D. Martinez, and R. Mei, “On boundary conditions in lattice
Boltzmann methods,” Phys. Fluids 8, 2527, (1996).
[24] Q. Zou, and X. He, “On pressure and velocity boundary conditions for the
lattice Boltzmann BGK model,” Phys. Fluids 9, 1591, (1997).
[25] C. F. Ho, C. Chang, K. H. Lin, and C. A. Lin, “Consistent boundary conditions
for 2D and 3D lattice Boltzmann simulations,” CMES 44, 137, (2009).
[26] D. d’Humi`eres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. S. Luo, “Multirelaxation-
time lattice Boltzmann models in three dimensions,” Phil. Trans. R.
Soc. Lond. A 360, 437, (2002).
[27] J. S. Wu, and Y. L. Shao, “Simulation of lid-driven cavity flows by parallel
lattice Boltzmann method using multi-relaxation-time scheme,” Int. J. Numer.
Meth. Fluids 46, 921, (2004).
[28] H. Yu, L. S. Luo, and S. S. Girimaji, “LES of turbulent square jet flow using
an MRT lattice Boltzmann model,” Comput. Fluids 35, 957, (2006).
[29] L. S. Lin, Y. C. Chen, and C. A. Lin, “Multi relaxation time lattice Boltzmann
simulations of deep lid driven cavity flows at different aspect ratios,” Comput.
Fluids 45, 233, (2011).
[30] M. Krafczyk, M. Schulz, and E. Rank, “Lattice-gas simulations of two-phase
flow in porous media,” Commun. Numer. Meth. Engng 14, 709, (1998).
[31] J. Bernsdorf, G. Brenner, and F. Durst, “Numerical analysis of the pressure
drop in porous media flow with lattice Boltzmann (BGK) automata,” Comput.
Phys. Commun. 129, 247, (2000).
[32] D. M. Freed, “Lattice-Boltzmann method for macroscopic porous media
modeling,” Int. J. Mod. Phys. C 9, 1491, (1998).
[33] K. Kono, T. Ishizuka, H. Tsuda, and A. Kurosawa, “Application of lattice
Boltzmann model to multiphase flows with phase transition,” Comput. Phys.
Commun. 129, 110, (2000).
[34] S. Hou, X. Shan, Q. Zou, G. D. Doolen, and W. E. Soll, “Evaluation of two
lattice Boltzmann models for multiphase flows,” J. Comput. Phys. 138, 695,
(1997).
[35] X. He, S. Chen, and R. Zhang, “A lattice Boltzmann scheme for
incompressible multiphase flow and its application in simulation of Rayleigh-
Taylor instability,” J. Comput. Phys. 152, 642, (1999).
[36] C. H. Shih, C. L. Wu, L. C. Chang, and C. A. Lin, “Lattice Boltzmann
simulations of incompressible liguid-gas system on partial wetting surface,”
Phil. Trans. R. Soc. A 369, 2510, (2011).
[37] Y. Hashimoto, and H. Ohashi, “Droplet dynamics using the lattice-gas
method,” Int. J. Mod. Phys. 8, 977, (1997).
[38] H. Xi, and C. Duncan, “Lattice Boltzmann simulations of three-dimensional
single droplet deformation and breakup under simple shear flow,” Phys. Rev.
E 59, 3022, (1999).
[39] S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley, “Simulation of cavity
flow by the lattice Boltzmann method,” J. Comput. Phys. 118, 329, (1995).
[40] Z. Gou, B. Shi, and N. Wang, “Lattice BGK model for incompressible Navier-
Stokes equation,” J. Comput. Phys. 165, 288, (2000).
[41] U. Ghia, K. N. Ghia, and C. T. Shin, “High-resolutions for incompressible flow
using the Navier-Stokes equations and a multigrid method,” J. Comput. Phys.
48, 387, (1982).
[42] S. Taneda, “Visulization of separating Stokes flows,” J. Phys. Soc. Japan 46,
1935, (1979).
[43] C. Shen, and J. M. Floryan, “Low Reynolds number flows over cavities,” Phys.
Fluids 28, 3191, (1985).
[44] D. V. Patil, K. N. Lakshmisha, and B. Rogg, “Lattice Boltzmann simulations
of lid-driven flow in deep cavities,” Comput. Fluids 35, 1116, (2006).
[45] F. Pan, and A. Acrivos, “Steady flow in rectangular cavities,” J. Fluid Mech.
28, 643, (1967).
[46] P. N. Shankar, and M. D. Deshpande, “Fluid mechanics in the driven cavity,”
Annu. Rev. Fluid Mech. 32, 93, (2000).
[47] E. Erturk, T. C. Corke, and C. G¨ok¸c¨ol, “Numerical solutions of 2-D steady
incompressible driven cavity flow at high Reynolds numbers,” Int. J. Numer.
Meth. Fluids 48, 747, (2005).
[48] R. Schreiber, and H. B. Keller, “Driven cavity flows by efficient numerical
techniques,” J. Comput. Phys. 49, 310, (1983).
[49] C. H. Bruneau, and M. Saad, “The 2D lid-driven cavity problem revisited,”
Comput. Fluids 35, 326, (2006).
[50] A. Fortin, M. Jardak, J. J. Gervais, and R. Pierre, “Localization of Hopf
bifurcations in fluid flow problems,” Int. J. Numer. Methods Fluids 24, 1185,
(1997).
[51] Y. F. Peng, Y. M. Shiau, and R. R. Hwang, “Transition in 2-D lid-driven cavity
flow,” Comput. Fluids 32, 337, (2003).
[52] W. Cazemier, R. W. C. P. Verstappen, and A. E. P. Veldman, “Proper
orthogonal decomposition and low-dimensional models for driven cavity flows,”
Phys. Fluids 10, 1685, (1998).
[53] M. Poliashenko, and C. K. Aidun, “A direct method for computation of simple
bifurcation,” J. Comput. Phys. 121, 246, (1995).
[54] G. Tiesinga, F. W. Wubs, and A. E. P. Veldman, “Bifurcation analysis of
incompressible flow in a driven cavity by the Newton-Picard method,” J.
Comput. Appl. Math. 140, 751, (2002).
[55] J. Bolz, I. Farmer, E. Grinspun, and P. Schr¨oder, “Sparse matrix solvers on the
GPU: Conjugate gradients and multigrid,” ACM Trans. Graph. (SIGGRAPH)
22, 917, (2003).
[56] R. Mei, W. Shyy, D. Yu, and L. S. Luo, “Lattice Boltzmann method for 3-D
flows with curved boundary,” J. Comput. Phys. 161, 680, (2000).
[57] F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, “GPU
acceleration for general conservation equations and its application to several
engineering problems,” Comput. Fluids 45, 147, (2011).
[58] J. T¨olke, “Implementation of a lattice Boltzmann kernel using the compute
unified device architecture developed by nVIDIA,” Comput. Visual Sci. 13,
29, (2008).
[59] J. T¨olke, and M. Krafczyk, “TeraFLOP computing on a desktop PC with GPUs
for 3D CFD,” Int. J. Comput. Fluid D. 22, 443, (2008).
[60] E. Riegel, T. Indinger, and N. A. Adams, “Implementation of a Lattice-
Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA
technology,” CSRD 23, 241, (2009).
[61] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, “A new approach to
the lattice Boltzmann method for graphics processing units,” Comput. Math.
Appl. 61, 3628, (2011).
[62] J. Habich, T. Zeiser, G. Hager, and G. Wellein, “Performance analysis and
optimization strategies for a D3Q19 lattice Boltzmann kernel on nVIDIA GPUs
using CUDA,” Adv. Eng. Softw. 42, 266, (2011).
[63] K. R. Tubbs, and F. T. C. Tsai, “GPU acceleration lattice Boltzmann model
for shallow water flow and mass transport,” Int. J. Numer. Meth. Engng. 86,
316, (2011).