研究生: |
陳珮榕 Chen, Pei-Rong |
---|---|
論文名稱: |
探討使用者如何解讀星等評價的分佈圖形 Exploring How Mobile Users Interpret the Shape of Ratings Distributions |
指導教授: |
雷松亞
Ray, Soumya |
口試委員: |
林福仁
Lin, Fu-Ren 徐茉莉 Shmueli, Galit |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 服務科學研究所 Institute of Service Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 評價 、評價分佈圖形 、評價數量 、調節焦點理論 、應用程式商店 、行動應用程式 、離散選擇實驗 、多項式羅吉斯模型 |
外文關鍵詞: | Ratings, Ratings Distribution Shapes, Number of Ratings, Regulatory Focus Theory, App Store, Mobile App, Discrete Choice Experiment, Multinomial Logit |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
星等評價對於使用者選用行動應用程式來說相當重要。過往的研究已經證明評價的正負性、數量與不一致性,對行動應用程式的銷售量或是消費者行為的影響;然而,行動應用程式的評價分佈圖形對使用者而言是否重要,卻是尚未被研究的議題。本研究旨在探討評價分佈圖形與其他相關因素對使用者在應用程式商店中的購買行為有何影響。本研究始於辨識應用程式商店中常見的評價分佈圖形;此外,藉著離散選擇實驗來調查人們在特定的評價分佈下,購買行動應用程式的可能性。本研究進一步採用多項式羅吉斯迴歸模型,來分析受測者在模擬的應用程式商店中做出的選擇。結果表明,使用者的選擇可能受到評價分佈圖形和評價數量的影響,但不受調節焦點的影響。此外,本研究也發現使用者使用應用程式商店的頻率,可以調節星等評價分佈圖形的影響。本研究為評價分佈圖形在使用者購買決策中的影響力帶來新見解,也就應用程式商店經營者和應用程式開發人員的商業意涵,做了進一步討論。
Ratings are exceedingly important in users’ adoption of mobile apps. Previous research has demonstrated the influence of valence, volume, and variance of ratings on sales or customer behavior; however, a largely under investigated issue is whether app’s ratings distribution matters to users. This study seeks to explore the effect of the shape of ratings distribution and related factors on users’ purchase behavior on app stores. Our investigation started by identifying the common ratings distribution shapes in the app store. Then, we applied a discrete choice experiment to examine the likelihood of people paying for apps under specific situations relating to ratings distribution. We used multinomial logit regression to model participants’ choice in the simulated app store. The results showed that mobile user’s choice could be influenced by ratings distribution shapes and the number of ratings, but not their regulatory focus. Moreover, app store visit frequency was found to moderate the influence of ratings distribution shapes. Our research reveals a new understanding of ratings distribution shapes in affecting mobile users’ purchasing decision. Implications for both app store operators and app developers are discussed.
Aaker, J. L., & Lee, A. Y. (2001). “I” seek pleasures and “we” avoid pains: The role of self-regulatory goals in information processing and persuasion. Journal of Consumer Research, 28(1), 33-49.
Aaker, J. L., & Lee, A. Y. (2006). Understanding regulatory fit. Journal of Marketing Research, 43(1), 15-19.
Aizaki, H., & Nishimura, K. (2008). Design and analysis of choice experiments using R: a brief introduction. Agricultural Information Research, 17(2), 86-94.
Bob Wheeler (2014). AlgDesign: Algorithmic Experimental Design. R package version 1.1-7.3. https://CRAN.R-project.org/package=AlgDesign
Boesen-Mariani, S., Gomez, P., & Gavard-Perret, M. L. (2010). Regulatory focus: A promising concept for marketing research. Recherche et Applications en Marketing (English Edition), 25(1), 87-106.
Carare, O. (2012). The impact of bestseller rank on demand: Evidence from the app market. International Economic Review, 53(3), 717-742.
Celsi, R. L., & Olson, J. C. (1988). The role of involvement in attention and comprehension processes. Journal of consumer research, 15(2), 210-224.
Chatterjee, P. (2001). Online Reviews: Do Consumers Use Them?. Advances in Consumer Research, 28(1).
Cheema, A., & Papatla, P. (2010). Relative importance of online versus offline information for Internet purchases: Product category and Internet experience effects. Journal of Business Research, 63(9), 979-985.
Chen, P. Y., Wu, S. Y., & Yoon, J. (2004). The impact of online recommendations and consumer feedback on sales. ICIS 2004 Proceedings, 58.
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of marketing research, 43(3), 345-354.
Chin, W. W. (1995). Partial least squares is to LISREL as principal components analysis is to common factor analysis. Technology Studies, 2(2), 315-319.
Chintagunta, P. K., Gopinath, S., & Venkataraman, S. (2010). The effects of online user reviews on movie box office performance: Accounting for sequential rollout and aggregation across local markets. Marketing Science, 29(5), 944-957.
Clemons, E. K., Gao, G. G., & Hitt, L. M. (2006). When online reviews meet hyperdifferentiation: A study of the craft beer industry. Journal of Management Information Systems, 23(2), 149-171.
Croissant, Y. (2012). Estimation of multinomial logit models in R: The mlogit Packages. R package version 0.2-2. URL: http://cran. r-project. org/web/packages/mlogit/vignettes/mlogit. pdf.
Cui, G., Lui, H. K., & Guo, X. (2010, October). Online reviews as a driver of new product sales. In Management of e-Commerce and e-Government (ICMeCG), 2010 Fourth International Conference on (pp. 20-25). IEEE.
De Maeyer, P. (2012). Impact of online consumer reviews on sales and price strategies: A review and directions for future research. Journal of Product & Brand Management, 21(2), 132-139.
DeSarbo, W. S., Kim, J., Choi, S. C., & Spaulding, M. (2002). A gravity-based multidimensional scaling model for deriving spatial structures underlying consumer preference/choice judgments. Journal of Consumer Research, 29(1), 91-100.
Didier Ruedin (2016). agrmt: Calculate Agreement or Consensus in Ordered Rating Scales. R package version 1.40.4. https://CRAN.R-project.org/package=agrmt
Draper, N. R., & Smith, H. (1981). Applied regression analysis, 2nd ed.
Duan, W., Gu, B., & Whinston, A. B. (2008). The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. Journal of retailing, 84(2), 233-242.
Engler, T. H., Winter, P., & Schulz, M. (2015). Understanding online product ratings: A customer satisfaction model. Journal of Retailing and Consumer Services, 27, 113-120.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
Galtung, J. (1969). Theory and Methods of Social Research.
Goodman, J. K., Cryder, C. E., & Cheema, A. (2013). Data collection in a flat world: The strengths and weaknesses of Mechanical Turk samples. Journal of Behavioral Decision Making, 26(3), 213-224.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis (Vol. 5, No. 3, pp. 207-219). Upper Saddle River, NJ: Prentice hall.
Higgins, E. T. (1997). Beyond pleasure and pain. American psychologist, 52(12), 1280.
Higgins, E. T., Friedman, R. S., Harlow, R. E., Idson, L. C., Ayduk, O. N., & Taylor, A. (2001). Achievement orientations from subjective histories of success: Promotion pride versus prevention pride. European Journal of Social Psychology, 31(1), 3-23.
Hoch, S. J., & Deighton, J. (1989). Managing what consumers learn from experience. The Journal of Marketing, 1-20.
Hong, Y., Chen, P. Y., & Hitt, L. M. (2014). Measuring Product Type with Dynamics of Online Product Review Variances: A Theoretical Model and the Empirical Applications.
Hsu, C. L., & Lin, J. C. C. (2015). What drives purchase intention for paid mobile apps?–An expectation confirmation model with perceived value. Electronic Commerce Research and Applications, 14(1), 46-57.
Hu, N., Pavlou, P. A., & Zhang, J. (2006, June). Can online reviews reveal a product's true quality?: empirical findings and analytical modeling of Online word-of-mouth communication. In Proceedings of the 7th ACM conference on Electronic commerce (pp. 324-330). ACM.
Hu, N.; Zhang, J.; and Pavlou, P. A. 2009. Overcoming the j-shaped distribution of product reviews. Commun. ACM 52:144–147.
Huang, M., Wang, Y., Liao, J., & Liu, M. (2017). Mixed effects of inconsistent reviews on consumers: The moderating roles of product attributes and regulatory focus. Acta Psychologica Sinica, 49(3), 370-382.
Hyrynsalmi, S., Seppanen, M., Aarikka-Stenroos, L., Suominen, A., Jarvelainen, J., & Harkke, V. (2015). Busting myths of electronic word of mouth: the relationship between customer ratings and the sales of mobile applications. Journal of theoretical and applied electronic commerce research, 10(2), 1-18.
Kirmani, A., & Rao, A. R. (2000). No pain, no gain: A critical review of the literature on signaling unobservable product quality. Journal of marketing, 64(2), 66-79.
Kjær, T. (2005). A review of the discrete choice experiment-with emphasis on its application in health care (p. 1). Denmark: Syddansk Universitet.
Lackermair, G., Kailer, D., & Kanmaz, K. (2013). Importance of online product reviews from a consumer's perspective. Advances in Economics and Business, 1(1), 1-5.
Latimer, A. E., Rivers, S. E., Rench, T. A., Katulak, N. A., Hicks, A., Hodorowski, J. K., Higgins, E. T., & Salovey, P. (2008). A field experiment testing the utility of regulatory fit messages for promoting physical activity. Journal of Experimental Social Psychology, 44(3), 826-832.
Louviere, J. J., & Woodworth, G. (1983). Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data. Journal of marketing research, 350-367.
Manski, C. F. (1977). The structure of random utility models. Theory and decision, 8(3), 229-254.
McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. Frontiers in Econometrics, 105-142.
McFadden, D. (1986). The choice theory approach to market research. Marketing science, 5(4), 275-297.
Mittal, B., & Lee, M. S. (1989). A causal model of consumer involvement. Journal of economic psychology, 10(3), 363-389.
Natter, M., & Feurstein, M. (2002). Real world performance of choice-based conjoint models. European Journal of Operational Research, 137(2), 448-458.
Number of apps available in leading app stores as of March 2017. (2017, March). Retrieved July 10, 2017, from https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
Pagano, D., & Brügge, B. (2013, May). User involvement in software evolution practice: a case study. In Software Engineering (ICSE), 2013 35th International Conference on (pp. 953-962). IEEE.
Pagano, D., & Maalej, W. (2013, July). User feedback in the appstore: An empirical study. In Requirements Engineering Conference (RE), 2013 21st IEEE International (pp. 125-134). IEEE.
Palmquist, R. A., & Kim, K. S. (2000). Cognitive style and on‐line database search experience as predictors of Web search performance. Journal of the Association for Information Science and Technology, 51(6), 558-566.
Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on amazon mechanical turk.
Park, D. H., & Kim, S. (2009). The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews. Electronic Commerce Research and Applications, 7(4), 399-410.
Park, D. H., Lee, J., & Han, I. (2007). The effect of on-line consumer reviews on consumer purchasing intention: The moderating role of involvement. International journal of electronic commerce, 11(4), 125-148.
Pfeffer, I. (2013). Regulatory fit messages and physical activity motivation. Journal of sport & exercise psychology, 35(2), 119-131.
Pham, M. T., & Avnet, T. (2004). Ideals and Oughts and the Reliance on Affect Versus Substance in Persuasion. Journal of Consumer Research, 30, 503–518.
Roy, R., & Ng, S. (2012). Regulatory focus and preference reversal between hedonic and utilitarian consumption. Journal of Consumer Behaviour, 11(1), 81-88.
Shen, G. C. C. (2015). Users' adoption of mobile applications: Product type and message framing's moderating effect. Journal of Business Research, 68(11), 2317-2321.
Sher, P. J., & Lee, S. H. (2009). Consumer skepticism and online reviews: An elaboration likelihood model perspective. Social Behavior and Personality: an international journal, 37(1), 137-143.
Sun, M. (2012). How does the variance of product ratings matter?. Management Science, 58(4), 696-707.
Thurstone, L. L. (1927). A law of comparative judgment. Psychological review, 34(4), 273.
Train, K., & Croissant, Y. (2012). Kenneth Train’s exercises using the mlogit package for R. R, 25, 0-2.
Viton, P. A. (2012). Discrete-Choice Logit Models With R.
Ware, C. (2012). Information visualization: perception for design. Elsevier.
Ye, Q., Law, R., & Gu, B. (2009). The impact of online user reviews on hotel room sales. International Journal of Hospitality Management, 28(1), 180-182.
Yeo, J., & Park, J. (2006). Effects of parent-extension similarity and self-regulatory focus on evaluations of brand extensions. Journal of Consumer Psychology, 16(3), 272-282.
Yu, C. H. (2000, September). An overview of remedial tools for collinearity in SAS. In Proceedings of 2000 Western Users of SAS Software Conference (Vol. 1, pp. 196-201).
Yves Croissant (2013). mlogit: multinomial logit model. R package version 0.2-4. https://CRAN.R-project.org/package=mlogit
Zhang, J. Q., Craciun, G., & Shin, D. (2010). When does electronic word-of-mouth matter? A study of consumer product reviews. Journal of Business Research, 63(12), 1336-1341.
Zhang, Z., Ye, Q., Law, R., & Li, Y. (2010). The impact of e-word-of-mouth on the online popularity of restaurants: A comparison of consumer reviews and editor reviews. International Journal of Hospitality Management, 29(4), 694-700.
Zhao, Z., & Cui, X. (2015). The effect of review valence, new product types and regulatory focus on new product online review usefulness. Acta Psychologica Sinica, 47(4), 555-568.
Zhou, R., & Pham, M. T. (2004). Promotion and Prevention across Mental Accounts: When Financial Products Dictate Consumers& Investment Goals. Journal of Consumer Research, 31(1), 125-135.
Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of marketing, 74(2), 133-148.