簡易檢索 / 詳目顯示

研究生: 戴澤宇
Tai, Tse-Yu
論文名稱: 以適體功能化之氮化鋁鎵/氮化鎵高電子遷移率電晶體生物感測器在高強度離子溶液中檢測多種心血管疾病
Aptamer-functionalized AlGaN/GaN high electron mobility transistor biosensors for multiple cardiovascular disease biomarker detection in high ionic strength solution
指導教授: 王玉麟
Wang, Yu-Lin
口試委員: 李國賓
Lee, Gwo-Bin
董國忠
Dong, Guo-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 適體靈敏度高電子遷移率電晶體
外文關鍵詞: NT-proBNP, Troponin I, Fibrinogen
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心血管疾病(CVDs)是當今世界的主要死亡原因,識別和管理心血管疾病風險對於有效的病人護理至關重要,正確的風險評估策略可以為健康以及高風險的個人提供有關如何更好地管理健康的信息,這可以大大降低心血管疾病的死亡率,使用蛋白質的心臟病生物指標進行風險評估可以改善早期診斷並有助於CVDs的預防,基於半導體的電子感測器對於快速和靈敏的蛋白質檢測非常有吸引力且高電子遷移率晶體管(HEMT)的感測器已被用於各種應用,如離子,氣體和生物分子感測器,具有高靈敏度和耐惡劣的化學環境等理想特性。
    本研究中分為兩個部分,第一個部分選定NT-proBNP、Troponin I、Fibrinogen這三種不同的心臟病生物指標做為檢測物,並且使用氮化鋁鎵/氮化鎵製成之高電子遷移率電晶體(AlGaN / GaN HEMT)的獨特感測方法,在高鹽濃度環境中直接檢測靶蛋白,使用目標特異性適體進行對柵電極功能化,目標蛋白被捕獲在柵電極的表面上與電晶體通道以非常小的間隙分開,通過形成雙電層(EDL)結構,溶液電容調節FET汲極電流。通過這種方式,可以實現在高離子強度介質如1X PBS和人血清中進行心臟生物指標的高靈敏度測定;第二部分同樣以電雙層結構感測其中一個目標蛋白NT-proBNP,並以透過調整柵電極與電晶體通道之間的距離方式來得到不同的靈敏度。


    Cardiovascular diseases (CVDs) are the major causes of death in the world today. Identifying and managing CVDs risk is of primary importance in efficient patient care. Proper risk assessment strategies can provide information to healthy as well as high risk individuals on how to better manage their health. This can greatly reduce the mortality rate of cardiovascular disease. Using protein based cardiac biomarkers for risk assessment can improve early diagnosis and aid in prognosis of CVDs. Semiconductor based electronic sensors are very attractive for rapid and sensitive protein detection. Highly Electron Mobility Transistor (HEMT) based sensors have been used in a variety of applications such as ion, gas and biomolecule sensing and possess desirable features such as high sensitivity and resistance to harsh chemical environment.
    This study is divided into two parts. The first part, three different biomarker of heart disease such as Nt-proBNP, Troponin I and Fibrinogen were selected as detection objects. A unique sensing methodology using AlGaN/GaN HEMT has been developed to directly detect target protein in high salt concentration environment. The target protein was captured on the surface of the gate electrode, which is separated from the transistor channel by a small gap, and functionalized with target specific aptamer. By forming an electrical double layer (EDL) structure, the solution capacitance modulates the FET drain current. In this way, highly sensitive determination of cardiac biomarkers in high ionic strength media such as 1X PBS and human serum can be realized. The second part also senses one of the target proteins NT-proBNP with an electric double layer structure, and obtains different sensitivities by adjusting the distance between the gate electrode and the transistor channel.

    第一章 導論 1.1研究動機…………………………………………………………………………………6 1.2研究目標…………………………………………………………………………………7 第二章 文獻回顧 2.1心血管疾病(CVDs) ………………………………………………………………………8 2.2心血管疾病生物指標蛋白………………………………………………………………9 2.2.1 NT-proBNP作為CVDs生物標誌物……………………………………………9 2.2.2 Troponin I作為CVDs生物標誌物……………………………………………9 2.2.3 Fibrinogen作為CVDs生物標誌物………………………………………………9 2.3場效應電晶體生物感測器………………………………………………………………11 2.3.1 高電子遷移率電晶體……………………………………………………………11 2.4電雙層結構與德拜長度…………………………………………………………………14 2.5 適體選擇…………………………………………………………………………………16 2.6 感測器靈敏度與通道和柵極之間距……………………………………………………18 第三章 實驗步驟 3.1 高電子遷移率電晶體製程………………………………………………………………19 3.2 適體結合…………………………………………………………………………………21 3.3 量測方式…………………………………………………………………………………23 3.4 感測器陣列製作封裝……………………………………………………………………24 第四章 結果與討論 4.1 感測器機制………………………………………………………………………………26 4.2 纖維蛋白原(Fibrinogen)樣本檢測結果………………………………………………28 4.3 心肌肌鈣蛋白I(Troponin I)樣本檢測結果……………………………………………35 4.4 N端前腦利鈉肽(NT-proBNP)樣本檢測結果…………………………………………42 4.5柵極與通道的間距與靈敏度之關係……………………………………………………49 4.6 N端前腦利鈉肽(NT-proBNP)血清樣本盲測結果……………………………………58 第五章 結論………………………………………………………………………………………61 第六章 未來展望…………………………………………………………………………………62 第七章 參考文獻…………………………………………………………………………………63

    [1] M. Naghavi, H. Wang, R Lozano, A Davis, X. Liang, M. Zhou, et al., "Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013" The Lancet, vol. 385, issue 9963, pp.117-171, 2015.
    [2] J. A. Finegold, P. Asaria, D P.Francis, "Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations" International Journal of Cardiology vol. 168, issue 2, pp.934-945, 2013.
    [3] R. S. Vasan, "Biomarkers of Cardiovascular Disease Molecular Basis and Practical Considerations"Circulation, vol. 113, pp.2335-2362, 2006.
    [4] S. Koenig, C. Porte, M Solé, and J Sturve, "Biliary PAH and Alkylphenol Metabolites, Biomarker Enzyme Activities, and Gene Expression Levels in the Deep-Sea FishAlepocephalus" rostratusenvironmental science and technology, vol. 47, pp. 2854-2861, 2013.
    [5] S. Krishnan, V. Mani, D. Wasalathanthri, C. V. Kumar, J. F. Rusling, " Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels" angewandte chemie international edition, vol. 50, pp.1175-1178, 2011.
    [6] P. Bergveld, "The development and application of FET-based biosensors" biosensor, vol. 2, pp. 15-33, 1986.
    [7] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors" Nano letters, vol. 7, pp. 3405-3409, 2007.
    [8] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor, D. A. Bennett, et al., "Global and regional burden of stoke during 1990-2010: findings from the Global Burden of Disease Study 2010" The Lancet, vol. 383, pp. 245-255, 2014.
    [9] J. Aronson, "Biomarkers and surrogate endpoint" British journal of clinical pharmacology, vol. 59, pp. 491-494, 2005.
    [10] J. A. De Lemos, D. A. Morrow, J. H. Bentley, T. Omland, M. S. Sabatine, C. H. McCabe, et al., "The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes" New England Journal of Medicine, vol. 345, pp. 1014-1021, 2001.
    [11] S. G. Williams, L. L. Ng, R. J. O’Brien, S. Taylor, D. J. Wright, L. B. Tan, "Is plasma N-BNP a good indicator of the functional reserve of failing hearts? The FRESH-BNP study" European journal of heart failure vol. 6, Issue 7 pp. 891-900, 2004.
    [12] J. Tomas, J. Stefan, L. Bertil, S. Mats, V. Per, W. Lars, "NT-proBNP in unstable coronary artery disease-experiences from the FAST, GUSTO IV and FRISC II trials" European journal of heart failure vol. 6, pp. 319-325, 2004.
    [13] J. Layland, R. J. Solaro, A. M. Shah, "Regulation of cardiac contractile function by troponin I phosphorylation" Cardiovascular research, vol. 66, pp. 12-21, 2005.
    [14] A.S.V. Shah, A. Anand, Y. Sandoval, K.K. Lee, S.W. Smith, et al., "High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study" Lancet, vol. 386, pp. 2481-2488, 2015.
    [15] T. Keller, T. Zeller, D. Peetz, S. Tzikas, A. Roth, et al., "Sensitive troponin I assay in early diagnosis of acute myocardial infarction" N. Engl. J. Med., vol. 361, pp. 868-877, 2009.
    [16] D. B. Diercks, W. F. Peacock, J.E Hollander, A.J. Singer, R. Birkhahn, "Diagnostic accuracy of a point-of-care troponin I assay for acute myocardial infarction within 3h after presentation in early presenters to the emergency department with chest pain" American Heart Journal, vol. 163, pp. 74-80, 2012.
    [17] G. Ndrepepa, S. Braun, L. King, M. Fusaro, D. Keta, et al., "Relation of Fibrinogen Level With Cardiovascular Events in Patients With Coronary Artery Disease" The American Journal of Cardiology, vol. 111, pp. 804-810,
    2013.
    [18] R. Wang, A. Lajevardi-Khosh, S. Choi, and J. Chae, "Regenerative Surface Plasmon Resonance (SPR) biosensor: Real-time measurement of fibrinogen in undiluted human serum using the competitive adsorption of proteins" Biosensors and Bioelectronics, vol. 28, pp. 304-307, 2011.
    [19] B. Esteban-Fernández de Ávila, V. Escamilla-Gómez, S. Campuzano, M.Pedrero, and J.M. Pingarrón, "Disposable amperometric magnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum " Analytica Chimica Acta, vol. 784, pp. 18-24, 2013.
    [20] Carole Émile, "Cas cliniques en cardiologie : place du BNP et du NT-proBNP" Option/Bio, vol. 23, pp. 18-24, 2012.
    [21] Wan-Joong Kim, B. K. Kim, A. Kim, C. Huh, C. Seong, et al., "Response to Cardiac Markers in Human Serum Analyzed by Guided-Mode Resonance Biosensor" Analytical Chemistry, vol. 82, pp. 9686-9693, 2010.
    [22] I. J. Higgins and C. R. Lowe "Introduction to the principles and application of biosensor" Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 316, pp. 3-11, 1987.
    [23] V. K. Khanna , A. Kumar , Y. K. Jain and S. Ahmad, "Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor" international journal of electronic, vol. 93, pp. 81-96, 2006.
    [24] G.-J Zhang, A. Agarwal, K. D. Buddharaju, N. Singh, and Z. Gao, "Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires" applied physics letter, vol. 90, pp. 233903, 2007.
    [25] J.-i Hahm and C. M. Lieber, "Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors" Nano letters, vol. 4, pp. 51-54, 2004.
    [26] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays" nature biotechnology vol. 23, pp.1294-1301, 2005.
    [27] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, "GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3Al2O3 as gate dielectric" applied physics letter, vol. 86, pp.063501, 2005.
    [28] S. Gupta, M. Elias, X. Wen, J. Shapiro, L. Brillson, W. Lu, S. C. Lee, "Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors" biosensors and bioelectronics, vol. 24, pp. 505-511, 2011.
    [29] O. Ambacher, M. Eickhoff, A. Link, M. Hermann, M. Stutzmann, et al., "Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures" physica status solidi (c), vol. 0, pp. 1878-1907, 2003.
    [30] S.N.G. Chu, F. Ren, S.J. Pearton, B.S. Kang, S. Kim, et al., "Piezoelectric polarization-induced two dimensional electron gases in AlGaN/GaN heteroepitaxial structures: Application for micro-pressure sensorsOriginal" material science and engineering A, vol. 409, pp. 340-347, 2005.
    [31] B. S. Kang, H. T. Wang, F. Ren, and S. J. Pearton, "Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors" journal of applied physics, vol. 104, pp. 031101, 2008.
    [32] P.M. Asbeck, E.T. Yu, S.S. Lau, "Piezoelectric charge densities in AlGaN/GaN HFETs" Electronic letters, vol. 33, pp. 1230-1231, 1997.
    [33] Z. Stojek, "The electrical double layer and its structure" Electroanalytical methods: springer, pp. 3-9, 2010.
    [34] B. C. David, P. A. Martin, "Coulomb Systems at Low Density: A Review" journal of statistical physics, vol. 96, pp. 1163-1330, 1999.
    [35] K. B. Oldham, "A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface" journal of electroanalytical chemistry, vol. 613, pp. 131-138, 2008.
    [36] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, et al., "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays" Nature Nanotechnology, vol. 10, pp. 791–795, 2015.
    [37] Indu Sarangadharan, Anil Kumar Pulikkathodi, Chia-Ho Chu, Yen-Wen Chen, Abiral Regmi, Pei-Chi Chen, Chen-Pin Hsu and Yu-Lin Wang, "Review—High Field Modulated FET Biosensors for Biomedical Applications" ECS Journal of Solid State Science Technology, vol. 7, issue 7, Q3032-3042, 2018
    [38] J. M. Woo, S. H. Kim, H. Chun, S. J. Kim, J. Ahn, and Y. J. Park, "Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method" Lab on chip, vol. 13, pp. 3755-3763, 2013.
    [39] R. D. Munje, S. Muthukumar, A. P. Selvam, and S. Prasad, "Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics" Scientific Reports 5, 2015.
    [40] Huang CJ, Lin HI, Shiesh SC, Lee GB, "An integrated microfluidic system for rapid screening of alpha-fetoprotein-specific aptamers." Biosensors and Bioelectronics, vol. 35, pp. 50-55, 2012.
    [41] Chia-Ho Chu, Indu Sarangadharan, Abiral Regmi, Yen-Wen Chen, Chen-Pin Hsu, Wen-Hsin Chang, Geng-Yen Lee, Jen-Inn Chyi, Chih-Chen Chen, Shu-Chu Shiesh, Gwo-Bin Lee & Yu-Lin Wang "Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum" Scientific Reports 7, 2017.
    [42] Anil Kumar Pulikkathodi, Indu Sarangadharan, Yi-Hong Chen, Geng-Yen Lee, Jen-Inn Chyi, Gwo-Bin Lee and Yu-Lin Wang "A Comprehensive Model for Whole Cell Sensing and Transmembrane Potential Measurement Using FET Biosensors" ECS J. Solid State Sci. Technol.2018 vol. 7, issue 7, Q3001-Q3008, 2018.
    [43] Yi-Ting Chen, Indu Sarangadharan, Revathi Sukesan, Ching-Yen Hseih, Geng-Yen Lee, Jen-Inn Chyi and Yu-Lin Wang "High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity" Scientific Reports 8, 2018.
    [44] D.-W. Lee, J. Lee, I.Y. Sohn, B.-Y. Kim, Y.M. Son, H. Bark, et al., "Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization", Nano Research, vol. 8, pp. 2340-2350, 2015
    [45] Y.-H. Lin, C.-P. Chu, C.-F. Lin, H.-H. Liao, H.-H. Tsai, Y.-Z. Juang, "Extended-gate field-effect transistor packed in micro channel for glucose, urea and protein biomarker detection" Biomedical Microdevices, vol. 17, issue 6, article111, 2015
    [46] Anirban Sinha, Tse-Yu Tai, Kuang-Hsien Li, Priya Gopinathan, Yi-Da Chung, Indu Sarangadharan, Hsi-Pin Ma, Po-Chiun Huang, Shu-Chu Shiesh, Yu-Lin Wang and Gwo-Bin Lee, "An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples", Biosensor and Bioelectronics, in reviewing

    QR CODE