研究生: |
劉奕宏 Liu, Yi-Hong |
---|---|
論文名稱: |
兩種處在不同上皮–間質轉化狀態之台灣口腔癌細胞株所誘導的不同腫瘤基質成分探討 Study of distinct tumor stroma components induced by two Taiwanese oral cancer cell lines with different EMT states |
指導教授: |
林素芳
Lin, Su-Fang 楊嘉鈴 Yang, Jia-Ling 夏興國 Shiah, Shine-Gwo |
口試委員: |
莊宗顯
Chuang, Tsung-Hsien 林仲彥 Lin, Chung-Yen 李政偉 Lee, Jeng-Woei |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 預後生物標記 、口腔癌 、部分上皮細胞-間質轉化 、腫瘤基質 、肌性癌症相關成纖維細胞 、發炎性癌症相關成纖維細胞 、透明質酸水解酶 |
外文關鍵詞: | prognostic biomarkers, oral cancer, partial epithelial-mesenchymal transition (p-EMT), tumor stroma, myofibroblastic CAF (myCAF), inflammatory CAF (iCAF), hyaluronidase |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
上皮–間質轉化 (epithelial–mesenchymal transition, EMT) 是一個上皮細胞獲取間質特性的細胞層次生理機轉,常發生於胚胎形成、器官發展、腫瘤侵犯及轉移等過程。歷經完全EMT而獲有間質特徵的癌細胞咸被認為較具幹細胞特性及抗藥性。此外,包括美國頭頸癌基因組圖譜 (TCGA-HNSC) 在內的多類癌症組織中,均可檢測到一種位於腫瘤組織侵襲前緣的獨特病理特徵,稱為partial EMT (p-EMT)。與進行單獨侵犯的EMT 癌細胞相比,集體移動的p-EMT 細胞尚需來自腫瘤微環境中其它成員的協助,如移動時軌道的清除、細胞外基質 (ECM) 重塑、逃避免疫系統攻擊等複雜且動態性之交互作用,方能於腫瘤基質 (stroma) 中做定向集體的移動,完成類似血管淋巴侵犯 (angiolymphatic invasion) 或神經周圍侵犯 (perineural invasion) 等不良預後病理現象。
為了深入探討口腔癌細胞進行侵襲時與微環境中各成員間的分子互動機轉,本論文針對具有 EMT (OC3) 及 p-EMT (TW2.6) 特性的口腔癌細胞株之十一例異種移植組織 (cell line derived xenograft, CDX) 進行轉錄體定序分析,清楚剖繪每一例 CDX 其源自口腔癌細胞及老鼠基質成分之基因表現情形,最後以免疫組織化學染色 (immunohistochemistry) 驗證生物資訊分析結果。我們發現與EMT 組別相比,p-EMT 腫瘤在小鼠體內生長得較快、腫瘤組織中偵測得到較豐富的宿主血管密度、巨噬細胞多聚集於腫瘤邊緣、以及測得較多的透明質酸沈積 (hyaluronan deposition)。此外,發炎性癌症相關成纖維細胞 (iCAF) 的特徵基因多富集於p-EMT 的異種組織基質中; 肌性癌症相關成纖維細胞 (myCAF) 的特徵基因則富集於EMT的組別裏。重要的是,異種組織基質基因的表現多能於人類口腔癌組織單細胞轉錄體數據庫 (scRNA-seq, GSE103322) 中得到驗證,包括肌成纖維細胞 (myofibroblast) 的IL6、ACTA2、MYL9、TAGLN; 肌性癌症相關成纖維細胞的TGFBI、TGFB2、FN1、THY1、COL12A1、FAP、HAS1、HAS2; 發炎性癌症相關成纖維細胞的FAP、CXCL12、GSN; 內皮細胞的 PECAM1、TGFBR2、HYAL1、HYAL2。
為了進一步探討EMT 與 p-EMT CDX 組織中之基質基因表現是否具臨床相關性,我們以一組參數完整的40例台灣口腔癌組織微陣列數據庫,針對20個基質基因表現與病人的總生存率進行Cox 比例風險模型評估。結果顯示其中6個基因在單變量分析中具統計顯著意義,包括TGFBI (HR 11, 95% CI 2.4–50, p=0.0021)、TGFB2、COL12A1、IL6、HAS2 和 HYAL1 (HR 0.15, 95% CI 0.042–0.55, p = 0.0039)。進一步多變量分析則闡明TGFBI及HYAL1的表現於該40例嚼食檳榔相關的台灣口腔癌組織中,分別為獨立的不良和具保護性生物標記。我們以同樣的方式針對美國TCGA 33種癌症組織,評估其基質基因表現對病人總生存率之Cox比例風險模型結果,發現TGFBI對於包括頭頸癌在內的七種癌症都是一個較差的指標 (BLCA, invasive BRCA, CESC, GBM, HNSC, KIRC, UVM),而HYAL1則是其中四型癌症的良好指標 (KIRC, KIRP, Pheochromocytoma, UVM)。因此我們的結果強烈支持不同癌症類型中應存在共同基質效應的理論。綜合以上所述,本論文除揭示數個台灣口腔癌組織的新靶點,也提供了可行的臨床應用: 例如由術後檢體或復發活檢體 (biopsy) 組織中,進行TGFBI單一基因之免疫組織化學染色,依其結果提供兼顧存活風險及避免過度治療之臨床決策。
Epithelial-mesenchymal transition (EMT) is a physiological process that occurs in embryogenesis, organ development, tumor invasion and metastasis. Tumor cells undergoing sequential EMT processes are thought to associate with cell stemness and drug resistance. In addition, a distinct clinicopathological feature, designated as partial EMT (p-EMT), is prevalently detected in clinical tissues of various cancer types including the head and cancer of The Cancer Genome Atlas (TCGA-HNSC). In contrast to a fully mesenchymal cell that invades alone, p-EMT cells migrate collectively and directionally in the tumor stroma, notably the angiolymphatic and perineural invasions. Located at the invasion front, p-EMT cells require additional support from the tumor stroma for collective cell migration, including track clearing, extracellular matrix remodeling and immune evasion, suggesting that cross talks between tumor cells and tumor microenvironment components are intricate and dynamic.
To gain further insights of the oral cancer ecosystem, transcriptomic analyses of xenograft tissues derived from oral cancer cell lines with EMT (OC3) and p-EMT (TW2.6) properties were used to delineate genes and pathways of human cancer cells and mouse stroma origins, followed by immunohistochemistry assays for validation. Compared to the EMT counterparts, p-EMT tumors grew faster, conferred higher microvascular density, cohabitated with more tumor-excluded macrophages, and displayed stronger hyaluronan deposition. Signature genes characteristic of inflammatory (iCAF) and myofibroblastic (myCAF) cancer-associated fibroblasts were enriched in the p-EMT and EMT xenograft stroma, respectively. Of importance, the expression of stromal genes identified by the aforementioned methodologies can be recapitulated in the scRNA-seq dataset of oral cancer (GSE103322), including myofibroblast (IL6, ACTA2, MYL9, TAGLN), myCAF (TGFBI, TGFB2, FN1, THY1, COL12A1, FAP, HAS1, HAS2), iCAF (FAP, CXCL12, GSN), and endothelial cell (PECAM1, TGFBR2, HYAL1, HYAL2).
To further corroborate the stromal genes with clinical relevance, a univariate Cox proportional hazards model was performed to compute the hazard ratios (HRs) of overall survival associated with each stroma-originating gene in the Taiwanese oral cancer cohort, NCKU-OrCA-40TN. Accordingly, 6 out of 20 selected genes revealed statistical significance, including TGFBI (HR 11, 95% CI 2.4–50, p=0.0021), TGFB2, COL12A1, IL6, HAS2, and HYAL1 (HR 0.15, 95% CI 0.042–0.55, p=0.0039). Multivariable Cox analysis further identified the expression of stromal TGFBI and HYAL1 as independent poor and protective biomarkers, respectively, for the 40 Taiwanese oral cancer tissues that were all derived from betel quid users. In The Cancer Genome Atlas, TGFBI was a poor marker not only for head and neck cancer but also for additional six cancer types (BLCA, invasive BRCA, CESC, GBM, HNSC, KIRC, UVM); HYAL1 was a good indicator for four tumor cohorts (KIRC, KIRP, Pheochromocytoma, UVM), suggesting common stromal effects existing in different cancer types. Thus, our results not only disclose novel targets for oral cancer control, but also provide feasible applications, e.g., a single immunohistochemical assay of TGFBI from treatment naive or recurred tumor biopsies, to assist clinical decision-making.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249.
2. Cancer Registry Annual Report, 2018 Taiwan, (December 2020).
3. Angadi PV, Patil PV, Hallikeri K, Mallapur MD, Hallikerimath S, Kale AD. Tumor budding is an independent prognostic factor for prediction of lymph node metastasis in oral squamous cell carcinoma. Int J Surg Pathol. 2015 Apr;23(2):102-10.
4. Ho YY, Wu TY, Cheng HC, Yang CC, Wu CH. The significance of tumor budding in oral cancer survival and its relevance to the eighth edition of the American Joint Committee on Cancer staging system. Head Neck. 2019 Sep;41(9):2991-3001.
5. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med. 1995 Nov;24(10):450-3.
6. Chou HC, Lin HW, Yang JH, Lin PY, Cheng SJ, Wu YH, Kuo YS. Clinical outcomes of oral cancer patients who survive for more than 5 years in Taiwan. J Formos Med Assoc. 2019 Dec;118(12):1616-1622.
7. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420-8.
8. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, Garcia de Herreros A, Goodall GJ, Hadjantonakis AK, Huang RJY, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massague J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G, Association EMTI. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020 Jun;21(6):341-352.
9. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG, Varvares MA, Mylvaganam R, Rozenblatt-Rosen O, Rocco JW, Faquin WC, Lin DT, Regev A, Bernstein BE. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell. 2017 Dec 14;171(7):1611-1624 e24.
10. Chen YL, Tsai WH, Ko YC, Lai TY, Cheng AJ, Shiah SG, Hsiao JR, Chang JY, Lin SF. Discoidin Domain Receptor-1 (DDR1) is Involved in Angiolymphatic Invasion in Oral Cancer. Cancers (Basel). 2020 Mar 31;12(4).
11. Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ. Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med. 2004 Feb;33(2):79-86.
12. Ko YC, Lai TY, Hsu SC, Wang FH, Su SY, Chen YL, Tsai ML, Wu CC, Hsiao JR, Chang JY, Wu YM, Robinson DR, Lin CY, Lin SF. Index of Cancer-Associated Fibroblasts Is Superior to the Epithelial-Mesenchymal Transition Score in Prognosis Prediction. Cancers (Basel). 2020 Jun 28;12(7).
13. Costea DE, Hills A, Osman AH, Thurlow J, Kalna G, Huang X, Pena Murillo C, Parajuli H, Suliman S, Kulasekara KK, Johannessen AC, Partridge M. Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res. 2013 Jul 1;73(13):3888-901.
14. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, Chio, II, Hwang CI, Tiriac H, Baker LA, Engle DD, Feig C, Kultti A, Egeblad M, Fearon DT, Crawford JM, Clevers H, Park Y, Tuveson DA. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017 Mar 6;214(3):579-596.
15. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discov. 2019 Aug;9(8):1102-1123.
16. Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, Senbabaoglu Y, Modrusan Z, Liang Y, Junttila MR, Klijn C, Bourgon R, Turley SJ. Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15(+) Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. Cancer Discov. 2020 Feb;10(2):232-253.
17. Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, Tarte K, Zinovyev A, Baulande S, Zalcman G, Vincent-Salomon A, Mechta-Grigoriou F. Single-Cell Analysis Reveals Fibroblast Clusters Linked to Immunotherapy Resistance in Cancer. Cancer Discov. 2020 Sep;10(9):1330-1351.
18. Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, Hu J, Chen K. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020 Oct 8;11(1):5077.
19. Davidson S, Efremova M, Riedel A, Mahata B, Pramanik J, Huuhtanen J, Kar G, Vento-Tormo R, Hagai T, Chen X, Haniffa MA, Shields JD, Teichmann SA. Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth. Cell Rep. 2020 May 19;31(7):107628.
20. Camps JL, Chang SM, Hsu TC, Freeman MR, Hong SJ, Zhau HE, von Eschenbach AC, Chung LW. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci U S A. 1990 Jan;87(1):75-9.
21. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25;315(26):1650-9.
22. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013 Nov;19(11):1423-37.
23. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007 Dec;9(12):1392-400.
24. Mascitti M, Zhurakivska K, Togni L, Caponio VCA, Almangush A, Balercia P, Balercia A, Rubini C, Lo Muzio L, Santarelli A, Troiano G. Addition of the tumour-stroma ratio to the 8th edition American Joint Committee on Cancer staging system improves survival prediction for patients with oral tongue squamous cell carcinoma. Histopathology. 2020 Nov;77(5):810-822.
25. Bradford JR, Wappett M, Beran G, Logie A, Delpuech O, Brown H, Boros J, Camp NJ, McEwen R, Mazzola AM, D'Cruz C, Barry ST. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers. Oncotarget. 2016 Apr 12;7(15):20773-87.
26. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, Verhaak RG. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.
27. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, Diehn M, Alizadeh AA. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019 Jul;37(7):773-782.
28. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514.
29. Lin YY, Wang LC, Hsieh YH, Hung YL, Chen YA, Lin YC, Lin YY, Chou TY. Computer-assisted three-dimensional quantitation of programmed death-ligand 1 in non-small cell lung cancer using tissue clearing technology. J Transl Med. 2022 Mar 16;20(1):131.
30. Kok SH, Hong CY, Lin SK, Lee JJ, Chiang CP, Kuo MY. Establishment and characterization of a tumorigenic cell line from areca quid and tobacco smoke-associated buccal carcinoma. Oral Oncol. 2007 Aug;43(7):639-47.
31. Lee CH, Wong TS, Chan JY, Lu SC, Lin P, Cheng AJ, Chen YJ, Chang JS, Hsiao SH, Leu YW, Li CI, Hsiao JR, Chang JY. Epigenetic regulation of the X-linked tumour suppressors BEX1 and LDOC1 in oral squamous cell carcinoma. The Journal of pathology. 2013 Jul;230(3):298-309.
32. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018 Jun;36(5):411-420.
33. Chen JH, Lim JS, Shyu KW, Meng CL. Direct cytotoxicity of garlic on human oral cancer cells. Zhonghua Ya Yi Xue Hui Za Zhi. 1988 Mar;7(1):13-8.
34. Lu YC, Chen YJ, Wang HM, Tsai CY, Chen WH, Huang YC, Fan KH, Tsai CN, Huang SF, Kang CJ, Chang JT, Cheng AJ. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev Res (Phila). 2012 Apr;5(4):665-74.
35. Lu YC, Cheng AJ, Lee LY, You GR, Li YL, Chen HY, Chang JT. MiR-520b as a novel molecular target for suppressing stemness phenotype of head-neck cancer by inhibiting CD44. Sci Rep. 2017 May 17;7(1):2042.
36. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, Cheng AJ, Kunju LP, Siddiqui J, Tomlins SA, Wyngaard P, Sadis S, Roychowdhury S, Hussain MH, Feng FY, Zalupski MM, Talpaz M, Pienta KJ, Rhodes DR, Robinson DR, Chinnaiyan AM. Identification of targetable FGFR gene fusions in diverse cancers [Research Support, N.I.H., Extramural]. Cancer Discov. 2013 Jun;3(6):636-47.
37. Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, Zhu J, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020 Jun;38(6):675-678.
38. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50.
39. Kahn BM, Lucas A, Alur RG, Wengyn MD, Schwartz GW, Li J, Sun K, Maurer HC, Olive KP, Faryabi RB, Stanger BZ. The vascular landscape of human cancer. J Clin Invest. 2021 Jan 19;131(2).
40. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, Bruno TC, Richmon JD, Wang H, Bishop JA, Chen L, Drake CG, Topalian SL, Pardoll DM, Pai SI. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013 Mar 15;73(6):1733-41.
41. Torronen K, Nikunen K, Karna R, Tammi M, Tammi R, Rilla K. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes. Histochem Cell Biol. 2014 Jan;141(1):17-31.
42. Pure E, Assoian RK. Rheostatic signaling by CD44 and hyaluronan. Cell Signal. 2009 May;21(5):651-5.
43. Kothapalli D, Zhao L, Hawthorne EA, Cheng Y, Lee E, Pure E, Assoian RK. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J Cell Biol. 2007 Feb 12;176(4):535-44.
44. Liu M, Tolg C, Turley E. Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment. Front Immunol. 2019;10:947.
45. Deed R, Rooney P, Kumar P, Norton JD, Smith J, Freemont AJ, Kumar S. Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Int J Cancer. 1997 Apr 10;71(2):251-6.
46. West DC, Kumar S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res. 1989 Jul;183(1):179-96.
47. Slevin M, Kumar S, Gaffney J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J Biol Chem. 2002 Oct 25;277(43):41046-59.
48. Golshani R, Lopez L, Estrella V, Kramer M, Iida N, Lokeshwar VB. Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res. 2008 Jan 15;68(2):483-91.
49. Golshani R, Hautmann SH, Estrella V, Cohen BL, Kyle CC, Manoharan M, Jorda M, Soloway MS, Lokeshwar VB. HAS1 expression in bladder cancer and its relation to urinary HA test. Int J Cancer. 2007 Apr 15;120(8):1712-20.
50. Adamia S, Maxwell CA, Pilarski LM. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord. 2005 Feb;5(1):3-14.
51. Liu N, Gao F, Han Z, Xu X, Underhill CB, Zhang L. Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells. Cancer Res. 2001 Jul 1;61(13):5207-14.
52. Bullard KM, Kim HR, Wheeler MA, Wilson CM, Neudauer CL, Simpson MA, McCarthy JB. Hyaluronan synthase-3 is upregulated in metastatic colon carcinoma cells and manipulation of expression alters matrix retention and cellular growth. Int J Cancer. 2003 Dec 10;107(5):739-46.
53. Kultti A, Zhao C, Singha NC, Zimmerman S, Osgood RJ, Symons R, Jiang P, Li X, Thompson CB, Infante JR, Jacobetz MA, Tuveson DA, Frost GI, Shepard HM, Huang Z. Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. Biomed Res Int. 2014;2014:817613.
54. Kuo YZ, Fang WY, Huang CC, Tsai ST, Wang YC, Yang CL, Wu LW. Hyaluronan synthase 3 mediated oncogenic action through forming inter-regulation loop with tumor necrosis factor alpha in oral cancer. Oncotarget. 2017 Feb 28;8(9):15563-15583.
55. Cheng XB, Sato N, Kohi S, Yamaguchi K. Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma. PLoS One. 2013;8(11):e80765.
56. de Sa VK, Carvalho L, Gomes A, Alarcao A, Silva MR, Couceiro P, Sousa V, Soares FA, Capelozzi VL. Role of the extracellular matrix in variations of invasive pathways in lung cancers. Braz J Med Biol Res. 2013 Jan;46(1):21-31.
57. Lokeshwar VB, Cerwinka WH, Isoyama T, Lokeshwar BL. HYAL1 hyaluronidase in prostate cancer: a tumor promoter and suppressor. Cancer Res. 2005 Sep 1;65(17):7782-9.
58. McAtee CO, Barycki JJ, Simpson MA. Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv Cancer Res. 2014;123:1-34.
59. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005 May 6;121(3):335-48.
60. Kim JE, Kim SJ, Lee BH, Park RW, Kim KS, Kim IS. Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, betaig-h3. J Biol Chem. 2000 Oct 6;275(40):30907-15.
61. Lauden L, Siewiera J, Boukouaci W, Ramgolam K, Mourah S, Lebbe C, Charron D, Aoudjit F, Jabrane-Ferrat N, Al-Daccak R. TGF-beta-induced (TGFBI) protein in melanoma: a signature of high metastatic potential. J Invest Dermatol. 2014 Jun;134(6):1675-1685.
62. Ma C, Rong Y, Radiloff DR, Datto MB, Centeno B, Bao S, Cheng AW, Lin F, Jiang S, Yeatman TJ, Wang XF. Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev. 2008 Feb 1;22(3):308-21.
63. Ween MP, Oehler MK, Ricciardelli C. Transforming growth Factor-Beta-Induced Protein (TGFBI)/(betaig-H3): a matrix protein with dual functions in ovarian cancer. Int J Mol Sci. 2012;13(8):10461-77.
64. Li B, Wen G, Zhao Y, Tong J, Hei TK. The role of TGFBI in mesothelioma and breast cancer: association with tumor suppression. BMC Cancer. 2012 Jun 13;12:239.
65. Wen G, Partridge MA, Li B, Hong M, Liao W, Cheng SK, Zhao Y, Calaf GM, Liu T, Zhou J, Zhang Z, Hei TK. TGFBI expression reduces in vitro and in vivo metastatic potential of lung and breast tumor cells. Cancer Lett. 2011 Sep 1;308(1):23-32.
66. Wen G, Hong M, Li B, Liao W, Cheng SK, Hu B, Calaf GM, Lu P, Partridge MA, Tong J, Hei TK. Transforming growth factor-beta-induced protein (TGFBI) suppresses mesothelioma progression through the Akt/mTOR pathway. Int J Oncol. 2011 Oct;39(4):1001-9.
67. Zhang Y, Wen G, Shao G, Wang C, Lin C, Fang H, Balajee AS, Bhagat G, Hei TK, Zhao Y. TGFBI deficiency predisposes mice to spontaneous tumor development. Cancer Res. 2009 Jan 1;69(1):37-44.
68. Ozawa D, Yokobori T, Sohda M, Sakai M, Hara K, Honjo H, Kato H, Miyazaki T, Kuwano H. TGFBI Expression in Cancer Stromal Cells is Associated with Poor Prognosis and Hematogenous Recurrence in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol. 2016 Jan;23(1):282-9.
69. Han B, Cai H, Chen Y, Hu B, Luo H, Wu Y, Wu J. The role of TGFBI (betaig-H3) in gastrointestinal tract tumorigenesis. Mol Cancer. 2015 Mar 24;14:64.
70. Bhagirath D, Abrol N, Khan R, Sharma M, Seth A, Sharma A. Expression of CD147, BIGH3 and Stathmin and their potential role as diagnostic marker in patients with urothelial carcinoma of the bladder. Clin Chim Acta. 2012 Oct 9;413(19-20):1641-6.
71. Chen Y, Zhao H, Feng Y, Ye Q, Hu J, Guo Y, Feng Y. Pan-Cancer Analysis of the Associations of TGFBI Expression With Prognosis and Immune Characteristics. Front Mol Biosci. 2021;8:745649.
72. He Y, Shao F, Pi W, Shi C, Chen Y, Gong D, Wang B, Cao Z, Tang K. Largescale Transcriptomics Analysis Suggests Over-Expression of BGH3, MMP9 and PDIA3 in Oral Squamous Cell Carcinoma. PLoS One. 2016;11(1):e0146530.
73. Wang BJ, Chi KP, Shen RL, Zheng SW, Guo Y, Li JF, Fei J, He Y. TGFBI Promotes Tumor Growth and is Associated with Poor Prognosis in Oral Squamous Cell Carcinoma. J Cancer. 2019;10(20):4902-4912.
74. Kisoda S, Shao W, Fujiwara N, Mouri Y, Tsunematsu T, Jin S, Arakaki R, Ishimaru N, Kudo Y. Prognostic value of partial EMT-related genes in head and neck squamous cell carcinoma by a bioinformatic analysis. Oral Dis. 2020 Apr 11.
75. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Pure E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020 Mar;20(3):174-186.
76. Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF. cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol. 1992 Sep;11(7):511-22.
77. Chen WY, Tsai YC, Yeh HL, Suau F, Jiang KC, Shao AN, Huang J, Liu YN. Loss of SPDEF and gain of TGFBI activity after androgen deprivation therapy promote EMT and bone metastasis of prostate cancer. Sci Signal. 2017 Aug 15;10(492).
78. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE, III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Senbabaoglu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Hoglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018 Feb 22;554(7693):544-548.
79. Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang L, Liu H, Jia G, Wu L, Hu X, Chen L, Wang P. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019 Apr 9;10(1):1637.
80. Wang J, Chen Y, Xiang F, Li M, Li H, Chi J, Ren K. Suppression of TGF-beta1 enhances chemosensitivity of cisplatin-resistant lung cancer cells through the inhibition of drug-resistant proteins. Artif Cells Nanomed Biotechnol. 2018 Nov;46(7):1505-1512.
81. Nakazawa N, Yokobori T, Kaira K, Turtoi A, Baatar S, Gombodorj N, Handa T, Tsukagoshi M, Ubukata Y, Kimura A, Kogure N, Ogata K, Maeno T, Sohda M, Yajima T, Shimizu K, Mogi A, Kuwano H, Saeki H, Shirabe K. High Stromal TGFBI in Lung Cancer and Intratumoral CD8-Positive T Cells were Associated with Poor Prognosis and Therapeutic Resistance to Immune Checkpoint Inhibitors. Ann Surg Oncol. 2020 Mar;27(3):933-942.
82. Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, Kwak TY. Artificial Intelligence in Pathology. J Pathol Transl Med. 2019 Jan;53(1):1-12.
83. Goodfellow I BY, Courville A, Bengio Y. Deep Learning Vol. 1. Cambridge. 2016;MA, USA: MIT press Cambridge.
84. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018 Nov 27;19(6):1236-1246.
85. Park Y, Kellis M. Deep learning for regulatory genomics. Nat Biotechnol. 2015 Aug;33(8):825-6.
86. Lin Y, Zhang W, Cao H, Li G, Du W. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data. Genes (Basel). 2020 Aug 4;11(8).
87. Krizhevsky AS, I.; Hinton, G. E. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25. 2012.
88. Araujo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Polonia A, Campilho A. Classification of breast cancer histology images using Convolutional Neural Networks. PLoS One. 2017;12(6):e0177544.
89. Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine. 2018 Jan;27:317-328.
90. Kriegsmann M, Haag C, Weis CA, Steinbuss G, Warth A, Zgorzelski C, Muley T, Winter H, Eichhorn ME, Eichhorn F, Kriegsmann J, Christopoulos P, Thomas M, Witzens-Harig M, Sinn P, von Winterfeld M, Heussel CP, Herth FJF, Klauschen F, Stenzinger A, Kriegsmann K. Deep Learning for the Classification of Small-Cell and Non-Small-Cell Lung Cancer. Cancers (Basel). 2020 Jun 17;12(6).
91. Wu Z, Wang L, Li C, Cai Y, Liang Y, Mo X, Lu Q, Dong L, Liu Y. DeepLRHE: A Deep Convolutional Neural Network Framework to Evaluate the Risk of Lung Cancer Recurrence and Metastasis From Histopathology Images. Front Genet. 2020;11:768.
92. Phan NN, Hsu CY, Huang CC, Tseng LM, Chuang EY. Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling. Front Oncol. 2021;11:734015.
93. Luthra R, Chen H, Roy-Chowdhuri S, Singh RR. Next-Generation Sequencing in Clinical Molecular Diagnostics of Cancer: Advantages and Challenges. Cancers (Basel). 2015 Oct 14;7(4):2023-36.
94. Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, Fidanza A, Lopez-Yrigoyen M, Millar MR, Urman A, Ai Z, Spellman PT, Hwang ES, Dixon JM, Wiechmann L, Coussens LM, Smith HO, Pollard JW. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019 Apr 15;35(4):588-602 e10.
95. Somerville TD, Biffi G, Dassler-Plenker J, Hur SK, He XY, Vance KE, Miyabayashi K, Xu Y, Maia-Silva D, Klingbeil O, Demerdash OE, Preall JB, Hollingsworth MA, Egeblad M, Tuveson DA, Vakoc CR. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. Elife. 2020 Apr 24;9.
96. Wu SZ, Roden DL, Wang C, Holliday H, Harvey K, Cazet AS, Murphy KJ, Pereira B, Al-Eryani G, Bartonicek N, Hou R, Torpy JR, Junankar S, Chan CL, Lam CE, Hui MN, Gluch L, Beith J, Parker A, Robbins E, Segara D, Mak C, Cooper C, Warrier S, Forrest A, Powell J, O'Toole S, Cox TR, Timpson P, Lim E, Liu XS, Swarbrick A. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 2020 Oct 1;39(19):e104063.