簡易檢索 / 詳目顯示

研究生: 莊鈞喬
Chuang, Chun-Chiao
論文名稱: 高分子/奈米金複合材料合成、鑑定及核酸傳遞應用
Synthesis and Characterizations of Polymer/Gold Nanocomplex and Its Applications on Nucleic Acid Delivery
指導教授: 張建文
口試委員: 姜文軒
邱信程
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 可降解PEI金奈米粒子金奈米棒基因傳遞逐層自組裝
外文關鍵詞: biodegradable polymer, gold nanoparticles, gold nanorods, layer-by-layer assembly, gene delivery
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非病毒性腫瘤基因治療面臨的首要問題是如何有效地將基因送入細胞,並且維持一定時間的基因表現,並為了克服傳統上含血清環境轉染效率差及基因載體毒性限制,我們將開發具高安全性及高效率之基因傳遞載體。
    第一部分研究基於開發新穎非病毒性及高生物相容性之金奈米粒子基因載體。將合成帶有雙硫鍵且具有生物可降解性之轉染高分子(SPEI),透過1H-NMR鑑定、細胞轉染效率實驗及毒性測試。金奈米粒子基因載體部分,則是合成金奈米粒子(AuNP)後,將11-Mercaptoundecanoic acid(MUA)利用自組裝方式修飾於金奈米粒子表面(MUA-AuNP),再將可降解高分子(SPEI)修飾於金奈米粒子表面(SPEI/MUA-AuNP),使金奈米粒子具攜帶核酸能力,接著利用靜電作用力製備SPEI/MUA-AuNPs/nucleic acid/γglutamic acid(γPGA)複合體。並對金奈米粒子基因載體進行電泳、粒徑大小、表面電位和紫外光可見光吸收光譜之物化性鑑定。經由物化性鑑定基因片段裝載至金奈米載體後,並將SPEI/MUA-AuNPs/nucleic acids/γPGA複合材料攜帶螢光與冷光基因片段並傳送到哺乳動物細胞。從以上實驗結果顯示,金奈米粒子具有攜帶核酸能力,且相較於市售PEI25K於含血清環境下有較高轉染效率。
    第二部分研究是開發具有高生物相容性極低毒性之金奈米棒基因載體。首先,利用開環反應合成帶有硫醇基之高分子(PEI800-SH),將PEI800-SH藉由金硫共價鍵(Au-S)自組裝於金奈米棒表面,使得金奈米棒具有攜帶核酸能力,並且對金奈米棒進行洋菜膠電泳、傅立葉轉換光譜儀、粒徑大小、表面電位和紫外光可見光吸收光譜之物化性分析。最後,由細胞分布、轉染效率及存活率實驗證實,金奈米棒表面上修飾之PEI800-SH幫助金奈米棒分散性、降低細胞毒性、具有攜帶核酸能力及細胞轉染效率,綜合實驗結果顯示,PEI800-SH修飾後之金奈米棒具有較低細胞毒性及高轉染效率。


    Nonviral gene delivery carriers are designed to efficiently deliver genes (nucleic acids) into the targeted cells/tissues in a safe manner. The goal of this thesis is to develop new biodegradable polymer/gold nanocomplex systems to overcome low transfection dfficiency under serum-containing environment ans carrier cytotoxicity. The thesis contains two main parts as describes below:
    In the first part of the thesis, a biodegradable polymer/gold nanosphere system was prepared using layer-by-layer deposition method and assessed for its gene delivery capability. A biodegradable polymer (SPEI) was synthesized following by the structure characterizations using 1H-NMR. To prepare polymer/gold nanosphere complex, we synthesized gold nanosphere (AuNP) with uniform size distribution. 11-Mercaptoundecanoic acid (MUA) was then used to coated covalently onto the surface of AuNP. SPEI was subsequently deposited on the surface of MUA-AuNP via electrostatic interaction to form SPEI/MUA-AuNP. In order to understand the interactions between the complex and nucleic acids as well as the changes on the material's properties during layer-by-layer process, a series of physicochemical properties were studied. To assess its gene transfection capability on mammalian cells, both fluorescence gene and luciferase gene were utilized as the transgene expression reporting system. The results show that SPEI/MUA-AuNP is capable of interacting and delivering the designated genes into the cells. It is worth mentioning that the transfection efficiency of SPEI/MUA-AuNP was significantly higher than the commercial PEI25K under serum-containing environment. Importantly, SPEI/MUA-AuNP resulted in significantly lower cytotoxicity comparing to PEI25K. Taken these results together, it is anticipated that this biodegradable polymer/gold nanocomplex system has good potential on nonviral gene therapy.
    In the second part of the thesis, gold nanorods (AuNR) with surface-bound low molecular weight PEI800 were synthesized and tested for the gene delivery performance. First, thiol group-bearing PEI800 (PEI800-SH) was synthesized by a ring-opening reaction. PEI800-SH was then used to assemble onto the surface of AuNR via gold-thiol covalent bonding to afford AuNR-S-PEI800 with nucleic acid-binding ability. AuNR-S-PEI800 was subsequently characterized by a series of physicochemical properties. Finally, the cellular uptake/distribution, gene transfection efficiency and cytocompatibility were investigated and the results suggest that AuNR-S-PEI800 posses well dispersity, low cytotoxicity and efficient gene transfection on mammalian cells.

    總目錄 中文摘要...............................................1 英文摘要...............................................2 第一章 緒論 1.1 研究動機...........................................12-13 1.2 研究目的與進行策略...................................13-14 第二章 文獻回顧 2.1 基因治療...........................................15-16 2.2 聚乙烯亞胺 (Polyethylenimine, PEI) .................16-17 2.2.1 高分子PEI分子量、轉染效率與細胞毒性...................17-18 2.2.2 質子海綿效應 (proton sponge effect) ...............18 2.3 聚麩胺酸(γPGA)天然高分子..............................19 2.4 金奈米粒子特性......................................19-20 2.4.1 氫硫基化合物(Mercaptocarbonic acid)金奈米粒子修飾...21 2.4.2 金奈米粒子在生物學上應用............................21-24 2.5 金奈米棒合成與特性...................................24-25 2.5.1金奈米棒在生物學上應用............................26 2.5.2 光熱治療之應用..................................27-28 第三章 可降解性高分子/金奈米粒子基因載體之製備與性質探討 3.1簡介................................................29 3.2 實驗設備............................................30 3.3 實驗藥品............................................31 3.4 實驗方法 3.4.1 金奈米粒子合成(AuNP)............................32 3.4.2 生物可降解性聚乙烯亞胺合成(SPEI)...............32-33 3.4.3 金奈米粒子表面之自組裝化學修飾(MUA-AuNP)..........33 3.4.4 高分子披覆(Polymer-coating)修飾(SPEI/MUA-AuNP)33-34 3.4.5 奈米粒子與核酸(DNA)接合(SPEI/MUA-AuNP/DNA)......34 3.4.6 聚麩胺酸(γ-PGA)天然高分子改質....................34 3.4.7 電泳分析.....................................34-35 3.4.8 細胞毒性測試....................................35 3.4.9 體外核酸轉染實驗..............................35-36 3.4.10 流式細胞儀(FACS)螢光表現定量.....................36 3.4.11 冷光/蛋白質相對表現量定量........................36-37 3.5 實驗結果與討論 3.5.1 生物可降解性高分子SPEI之特性分析.....................38-39 3.5.2 金奈米粒子複合材料 3.5.2.1 金奈米粒子之粒徑分布與表面電位..................39-45 3.5.2.2 金奈米粒子之吸收光光譜.........................46 3.5.2.3 金奈米粒子之穿透式顯微鏡影像....................47 3.5.2.4 電泳分析............48-50 3.5.3 體外細胞實驗 3.5.3.1可降解高分子與金奈米粒子基因載體之細胞毒性測試......51-53 3.5.3.2核酸轉染實驗 3.5.3.2.1 可降解高分子細胞轉染效率.....................54-55 3.5.3.2.2 金奈米粒子細胞轉染效率......................56-63 3.5.3.2.3 金奈米粒子基因沉默效應......................64-65 第四章 開發功能性高分子/奈米金棒基因載體之與應用 4.1簡介...............................................66 4.2 實驗設備...........................................67 4.3 實驗藥品...........................................68 4.4 實驗方法 4.4.1 硫醇基高分子合成 (PEI800-SH)...................69 4.4.2 金奈米棒合成 (AuNR)...........................69 4.4.3 金奈米棒表面之自組裝化學修飾.....................69 4.4.4 電泳分析.....................................69-70 4.4.5 細胞毒性測試..................................70 4.4.6 體外核酸轉染實驗...............................71 4.4.7 冷光/蛋白質相對表現量(RLU/protein值)定量........71-72 4.5 實驗結果與討論 4.5.1 PEI800-SH之特性分析...............................73 4.5.2 金奈米棒複合材料 4.5.2.1 金奈米棒之紫外光可見光吸收光光譜(UV-Vis).........73-74 4.5.2.2 金奈米棒之傅立葉轉換光譜圖(FTIR)...............75 4.5.2.3 金奈米棒之穿透式顯微鏡影像(TEM)................76 4.5.2.4 電泳分析....................................77 4.5.3 體外細胞實驗 4.5.3.1細胞毒性測試..................................78 4.5.3.2金奈米棒於細胞內之分布.........................79 4.5.3.3核酸轉染實驗..................................79-81 第五章 結論.............................................82-83 第六章 參考文獻..........................................84-92

    1 P. P. Adiseshaiah, J. B. Hall, and S. E. McNeil, 'Nanomaterial Standards for Efficacy and Toxicity Assessment', Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2 (2010), 99-112.
    2 M. S. Al-Dosari, and X. Gao, 'Nonviral Gene Delivery: Principle, Limitations, and Recent Progress', AAPS J, 11 (2009), 671-81.
    3 J. M. Anderson, 'Molecular Structure of Tight Junctions and Their Role in Epithelial Transport', News Physiol Sci, 16 (2001), 126-30.
    4 Roya Ashayer, Samjid H. Mannan, and Shahriar Sajjadi, 'Synthesis and Characterization of Gold Nanoshells Using Poly(Diallyldimethyl Ammonium Chloride)', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329 (2008), 134-41.
    5 R. V. Benjaminsen, M. A. Mattebjerg, J. R. Henriksen, S. M. Moghimi, and T. L. Andresen, 'The Possible "Proton Sponge " Effect of Polyethylenimine (Pei) Does Not Include Change in Lysosomal Ph', Mol Ther, 21 (2013), 149-57.
    6 D. S. W. Benoit, W. Gray, N. Murthy, H. Li, and C. L. Duvall, '4.422 - Ph-Responsive Polymers for the Intracellular Delivery of Biomolecular Drugs', in Comprehensive Biomaterials, ed. by Ducheyne Editor-in-Chief: Paul (Oxford: Elsevier, 2011), pp. 357-75.
    7 M. Bertschinger, G. Backliwal, A. Schertenleib, M. Jordan, D. L. Hacker, and F. M. Wurm, 'Disassembly of Polyethylenimine-DNA Particles in Vitro: Implications for Polyethylenimine-Mediated DNA Delivery', J Control Release, 116 (2006), 96-104.
    8 C. F. Bohren, and T. J. Nevitt, 'Absorption by a Sphere: A Simple Approximation', Appl Opt, 22 (1983), 774-5.
    9 O. Boussif, F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr, 'A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine', Proc Natl Acad Sci U S A, 92 (1995), 7297-301.
    10 Mathias Brust, Donald Bethell, Christopher J. Kiely, and David J. Schiffrin, 'Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties', Langmuir, 14 (1998), 5425-29.
    11 J. D. Carter, N. N. Cheng, Y. Qu, G. D. Suarez, and T. Guo, 'Nanoscale Energy Deposition by X-Ray Absorbing Nanostructures', J Phys Chem B, 111 (2007), 11622-5.
    12 Y. T. Chang, P. Y. Liao, H. S. Sheu, Y. J. Tseng, F. Y. Cheng, and C. S. Yeh, 'Near-Infrared Light-Responsive Intracellular Drug and Sirna Release Using Au Nanoensembles with Oligonucleotide-Capped Silica Shell', Adv Mater, 24 (2012), 3309-14.
    13 R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, 'Imaging Three-Dimensional Rotational Diffusion of Plasmon Resonant Gold Nanorods Using Polarization-Sensitive Optical Coherence Tomography', Phys Rev E Stat Nonlin Soft Matter Phys, 83 (2011), 040903.
    14 C. C. Chien, H. H. Chen, S. F. Lai, K. C. Wu, X. Cai, Y. Hwu, C. Petibois, Y. Chu, and G. Margaritondo, 'Gold Nanoparticles as High-Resolution X-Ray Imaging Contrast Agents for the Analysis of Tumor-Related Micro-Vasculature', J Nanobiotechnology, 10 (2012), 10.
    15 S. Cornelis, M. Vandenbranden, J. M. Ruysschaert, and A. Elouahabi, 'Role of Intracellular Cationic Liposome-DNA Complex Dissociation in Transfection Mediated by Cationic Lipids', DNA Cell Biol, 21 (2002), 91-7.
    16 J. A. Coulter, S. Jain, K. T. Butterworth, L. E. Taggart, G. R. Dickson, S. J. McMahon, W. B. Hyland, M. F. Muir, C. Trainor, A. R. Hounsell, J. M. O'Sullivan, G. Schettino, F. J. Currell, D. G. Hirst, and K. M. Prise, 'Cell Type-Dependent Uptake, Localization, and Cytotoxicity of 1.9 Nm Gold Nanoparticles', Int J Nanomedicine, 7 (2012), 2673-85.
    17 P. Crespo, R. Litrán, T. C. Rojas, M. Multigner, J. M. de la Fuente, J. C. Sánchez-López, M. A. García, A. Hernando, S. Penadés, and A. Fernández, 'Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol-Capped Gold Nanoparticles', Physical Review Letters, 93 (2004), 087204.
    18 S. C. De Smedt, J. Demeester, and W. E. Hennink, 'Cationic Polymer Based Gene Delivery Systems', Pharm Res, 17 (2000), 113-26.
    19 M. Dominska, and D. M. Dykxhoorn, 'Breaking Down the Barriers: Sirna Delivery and Endosome Escape', J Cell Sci, 123 (2010), 1183-9.
    20 S. Esser, K. Wolburg, H. Wolburg, G. Breier, T. Kurzchalia, and W. Risau, 'Vascular Endothelial Growth Factor Induces Endothelial Fenestrations in Vitro', J Cell Biol, 140 (1998), 947-59.
    21 N. Fairbairn, A. Christofidou, A. G. Kanaras, T. A. Newman, and O. L. Muskens, 'Hyperspectral Darkfield Microscopy of Single Hollow Gold Nanoparticles for Biomedical Applications', Phys Chem Chem Phys, 15 (2013), 4163-8.
    22 N. Ferrara, H. P. Gerber, and J. LeCouter, 'The Biology of Vegf and Its Receptors', Nat Med, 9 (2003), 669-76.
    23 S. Filleur, O. V. Volpert, A. Degeorges, C. Voland, F. Reiher, P. Clezardin, N. Bouck, and F. Cabon, 'In Vivo Mechanisms by Which Tumors Producing Thrombospondin 1 Bypass Its Inhibitory Effects', Genes Dev, 15 (2001), 1373-82.
    24 D. Finsinger, J. S. Remy, P. Erbacher, C. Koch, and C. Plank, 'Protective Copolymers for Nonviral Gene Vectors: Synthesis, Vector Characterization and Application in Gene Delivery', Gene Ther, 7 (2000), 1183-92.
    25 W. T. Godbey, M. A. Barry, P. Saggau, K. K. Wu, and A. G. Mikos, 'Poly(Ethylenimine)-Mediated Transfection: A New Paradigm for Gene Delivery', J Biomed Mater Res, 51 (2000), 321-8.
    26 W. T. Godbey, K. K. Wu, and A. G. Mikos, 'Size Matters: Molecular Weight Affects the Efficiency of Poly(Ethylenimine) as a Gene Delivery Vehicle', J Biomed Mater Res, 45 (1999), 268-75.
    27 Anand Gole, and Catherine J. Murphy, 'Seed-Mediated Synthesis of Gold Nanorods:  Role of the Size and Nature of the Seed', Chemistry of Materials, 16 (2004), 3633-40.
    28 Agnieszka Grabowska, Marcin Nowicki, and Joanna Kwinta, 'Glutamate Dehydrogenase of the Germinating Triticale Seeds: Gene Expression, Activity Distribution and Kinetic Characteristics', Acta Physiologiae Plantarum, 33 (2011), 1981-90.
    29 Rodrigo A. Gutiérrez, Rob M. Ewing, J. Michael Cherry, and Pamela J. Green, 'Identification of Unstable Transcripts in Arabidopsis by Cdna Microarray Analysis: Rapid Decay Is Associated with a Group of Touch- and Specific Clock-Controlled Genes', Proceedings of the National Academy of Sciences, 99 (2002), 11513-18.
    30 J. F. Hainfeld, F. A. Dilmanian, Z. Zhong, D. N. Slatkin, J. A. Kalef-Ezra, and H. M. Smilowitz, 'Gold Nanoparticles Enhance the Radiation Therapy of a Murine Squamous Cell Carcinoma', Phys Med Biol, 55 (2010), 3045-59.
    31 J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, 'The Use of Gold Nanoparticles to Enhance Radiotherapy in Mice', Phys Med Biol, 49 (2004), N309-15.
    32 Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, 'A Study on the Sizes and Concentrations of Gold Nanoparticles by Spectra of Absorption, Resonance Rayleigh Scattering and Resonance Non-Linear Scattering', Spectrochim Acta A Mol Biomol Spectrosc, 61 (2005), 2861-6.
    33 H. G. Hotz, O. J. Hines, R. Masood, B. Hotz, T. Foitzik, H. J. Buhr, P. S. Gill, and H. A. Reber, 'Vegf Antisense Therapy Inhibits Tumor Growth and Improves Survival in Experimental Pancreatic Cancer', Surgery, 137 (2005), 192-9.
    34 C. Hu, Q. Peng, F. Chen, Z. Zhong, and R. Zhuo, 'Low Molecular Weight Polyethylenimine Conjugated Gold Nanoparticles as Efficient Gene Vectors', Bioconjug Chem, 21 (2010), 836-43.
    35 M. R. Ivanov, H. R. Bednar, and A. J. Haes, 'Investigations of the Mechanism of Gold Nanoparticle Stability and Surface Functionalization in Capillary Electrophoresis', ACS Nano, 3 (2009), 386-94.
    36 R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, 'Photoinduced Conversion of Silver Nanospheres to Nanoprisms', Science, 294 (2001), 1901-3.
    37 H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone, 'A Review of the in Vivo and in Vitro Toxicity of Silver and Gold Particulates: Particle Attributes and Biological Mechanisms Responsible for the Observed Toxicity', Crit Rev Toxicol, 40 (2010), 328-46.
    38 V. Kafil, and Y. Omidi, 'Cytotoxic Impacts of Linear and Branched Polyethylenimine Nanostructures in A431 Cells', Bioimpacts, 1 (2011), 23-30.
    39 E. D. Kaufman, J. Belyea, M. C. Johnson, Z. M. Nicholson, J. L. Ricks, P. K. Shah, M. Bayless, T. Pettersson, Z. Feldoto, E. Blomberg, P. Claesson, and S. Franzen, 'Probing Protein Adsorption onto Mercaptoundecanoic Acid Stabilized Gold Nanoparticles and Surfaces by Quartz Crystal Microbalance and Zeta-Potential Measurements', Langmuir, 23 (2007), 6053-62.
    40 A. Kumar, H. Ma, X. Zhang, K. Huang, S. Jin, J. Liu, T. Wei, W. Cao, G. Zou, and X. J. Liang, 'Gold Nanoparticles Functionalized with Therapeutic and Targeted Peptides for Cancer Treatment', Biomaterials, 33 (2012), 1180-9.
    41 C. H. Kuo, and M. H. Huang, 'Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach', Langmuir, 21 (2005), 2012-6.
    42 T. Kurosaki, T. Kitahara, S. Fumoto, K. Nishida, J. Nakamura, T. Niidome, Y. Kodama, H. Nakagawa, H. To, and H. Sasaki, 'Ternary Complexes of Pdna, Polyethylenimine, and Gamma-Polyglutamic Acid for Gene Delivery Systems', Biomaterials, 30 (2009), 2846-53.
    43 K. Kyhm, K. C. Je, and R. A. Taylor, 'Amplified All-Optical Polarization Phase Modulator Assisted by a Local Surface Plasmon in Au-Hybrid Cdse Quantum Dots', Opt Express, 20 (2012), 19735-43.
    44 M. Y. Lee, S. J. Park, K. Park, K. S. Kim, H. Lee, and S. K. Hahn, 'Target-Specific Gene Silencing of Layer-by-Layer Assembled Gold-Cysteamine/Sirna/Pei/Ha Nanocomplex', ACS Nano, 5 (2011), 6138-47.
    45 Y. Lee, M. Kim, J. Han, K. H. Yeom, S. Lee, S. H. Baek, and V. N. Kim, 'Microrna Genes Are Transcribed by Rna Polymerase Ii', EMBO J, 23 (2004), 4051-60.
    46 G. F. Lemkine, and B. A. Demeneix, 'Polyethylenimines for in Vivo Gene Delivery', Curr Opin Mol Ther, 3 (2001), 178-82.
    47 Wanling Liang, and Jenny K.W. Lam, Endosomal Escape Pathways for Non-Viral Nucleic Acid Delivery Systems, Molecular Regulation of Endocytosis (2012).
    48 S. T. Liu, T. Zhu, Y. C. Wang, and Z. F. Liu, 'Synthesis and Ph Dependent Optical Properties of Gold Nanoparticles Capped with Mercaptopropionic Acid', Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 337 (1999), 245-48.
    49 X. Liu, Y. Chen, H. Li, N. Huang, Q. Jin, K. Ren, and J. Ji, 'Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior', ACS Nano, 7 (2013), 6244-57.
    50 J. M. McMahon, and S. R. Emory, 'Phase Transfer of Large Gold Nanoparticles to Organic Solvents with Increased Stability', Langmuir, 23 (2007), 1414-8.
    51 T. Merdan, J. Kopecek, and T. Kissel, 'Prospects for Cationic Polymers in Gene and Oligonucleotide Therapy against Cancer', Adv Drug Deliv Rev, 54 (2002), 715-58.
    52 B. Millauer, L. K. Shawver, K. H. Plate, W. Risau, and A. Ullrich, 'Glioblastoma Growth Inhibited in Vivo by a Dominant-Negative Flk-1 Mutant', Nature, 367 (1994), 576-9.
    53 S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk, 'A Two-Stage Poly(Ethylenimine)-Mediated Cytotoxicity: Implications for Gene Transfer/Therapy', Mol Ther, 11 (2005), 990-5.
    54 L. O. Mosnier, 'Platelet Factor 4 Inhibits Thrombomodulin-Dependent Activation of Thrombin-Activatable Fibrinolysis Inhibitor (Tafi) by Thrombin', J Biol Chem, 286 (2011), 502-10.
    55 C. J. Murphy, L. B. Thompson, D. J. Chernak, J. A. Yang, S. T. Sivapalan, S. P. Boulos, J. Y. Huang, A. M. Alkilany, and P. N. Sisco, 'Gold Nanorod Crystal Growth: From Seed-Mediated Synthesis to Nanoscale Sculpting', Current Opinion in Colloid & Interface Science, 16 (2011), 128-34.
    56 N. Nath, and A. Chilkoti, 'A Colorimetric Gold Nanoparticle Sensor to Interrogate Biomolecular Interactions in Real Time on a Surface', Anal Chem, 74 (2002), 504-9.
    57 A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, 'Understanding Biophysicochemical Interactions at the Nano-Bio Interface', Nat Mater, 8 (2009), 543-57.
    58 M. Nishikawa, and L. Huang, 'Nonviral Vectors in the New Millennium: Delivery Barriers in Gene Transfer', Hum Gene Ther, 12 (2001), 861-70.
    59 M. Oishi, K. Kataoka, and Y. Nagasaki, 'Ph-Responsive Three-Layered Pegylated Polyplex Micelle Based on a Lactosylated Abc Triblock Copolymer as a Targetable and Endosome-Disruptive Nonviral Gene Vector', Bioconjug Chem, 17 (2006), 677-88.
    60 A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, 'Imaging Gold Nanorods in Excised Human Breast Carcinoma by Spectroscopic Optical Coherence Tomography', J Mater Chem, 19 (2009), 6407.
    61 D. W. Pack, A. S. Hoffman, S. Pun, and P. S. Stayton, 'Design and Development of Polymers for Gene Delivery', Nat Rev Drug Discov, 4 (2005), 581-93.
    62 H. Park, J. Yang, J. Lee, S. Haam, I. H. Choi, and K. H. Yoo, 'Multifunctional Nanoparticles for Combined Doxorubicin and Photothermal Treatments', ACS Nano, 3 (2009), 2919-26.
    63 D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, 'Nanocarriers as an Emerging Platform for Cancer Therapy', Nat Nanotechnol, 2 (2007), 751-60.
    64 D. Pissuwan, T. Niidome, and M. B. Cortie, 'The Forthcoming Applications of Gold Nanoparticles in Drug and Gene Delivery Systems', J Control Release, 149 (2011), 65-71.
    65 D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, 'Therapeutic Possibilities of Plasmonically Heated Gold Nanoparticles', Trends Biotechnol, 24 (2006), 62-7.
    66 S. Rana, A. Bajaj, R. Mout, and V. M. Rotello, 'Monolayer Coated Gold Nanoparticles for Delivery Applications', Adv Drug Deliv Rev, 64 (2012), 200-16.
    67 M. R. Rasch, E. Rossinyol, J. L. Hueso, B. W. Goodfellow, J. Arbiol, and B. A. Korgel, 'Hydrophobic Gold Nanoparticle Self-Assembly with Phosphatidylcholine Lipid: Membrane-Loaded and Janus Vesicles', Nano Lett, 10 (2010), 3733-9.
    68 P. L. Redmond, and L. E. Brus, '"Hot Electron" Photo-Charging and Electrochemical Discharge Kinetics of Silver Nanocrystals', Journal of Physical Chemistry C, 111 (2007), 14849-54.
    69 A. Reikerstorfer, H. Holz, H. G. Stunnenberg, and M. Busslinger, 'Low Affinity Binding of Interleukin-1 Beta and Intracellular Signaling Via Nf-Kappa B Identify Fit-1 as a Distant Member of the Interleukin-1 Receptor Family', J Biol Chem, 270 (1995), 17645-8.
    70 W. G. Roberts, J. Delaat, M. Nagane, S. Huang, W. K. Cavenee, and G. E. Palade, 'Host Microvasculature Influence on Tumor Vascular Morphology and Endothelial Gene Expression', Am J Pathol, 153 (1998), 1239-48.
    71 T. K. Sau, and C. J. Murphy, 'Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution', Langmuir, 20 (2004), 6414-20.
    72 J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, 'DNA-Templated Self-Assembly of Two-Dimensional and Periodical Gold Nanoparticle Arrays', Angew Chem Int Ed Engl, 45 (2006), 730-5.
    73 I. L. Shih, and Y. T. Van, 'The Production of Poly-(Gamma-Glutamic Acid) from Microorganisms and Its Various Applications', Bioresour Technol, 79 (2001), 207-25.
    74 R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, 'Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate inside the Cellular Compartment: A Microscopic Overview', Langmuir, 21 (2005), 10644-54.
    75 Danielle K. Smith, and Brian A. Korgel, 'The Importance of the Ctab Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods', Langmuir, 24 (2008), 644-49.
    76 L. Smith, and J. F. Byers, 'Gene Therapy in the Post-Gelsinger Era', JONAS Healthc Law Ethics Regul, 4 (2002), 104-10.
    77 G. A. Soff, 'Angiostatin and Angiostatin-Related Proteins', Cancer Metastasis Rev, 19 (2000), 97-107.
    78 H. Song, Y. M. Lim, H. W. Kwon, M. S. Lee, and Y. T. Yu, 'A Study of the Behavior of Mua-Coated Au Colloid in Ethanol Solution', Journal of Ceramic Processing Research, 8 (2007), 341-46.
    79 J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan, and H. P. Vornlocher, 'Therapeutic Silencing of an Endogenous Gene by Systemic Administration of Modified Sirnas', Nature, 432 (2004), 173-8.
    80 C. Spitzweg, and J. C. Morris, 'Gene Therapy for Thyroid Cancer: Current Status and Future Prospects', Thyroid, 14 (2004), 424-34.
    81 M. A. Swartz, N. Iida, E. W. Roberts, S. Sangaletti, M. H. Wong, F. E. Yull, L. M. Coussens, and Y. A. DeClerck, 'Tumor Microenvironment Complexity: Emerging Roles in Cancer Therapy', Cancer Res, 72 (2012), 2473-80.
    82 A. K. Varkouhi, M. Scholte, G. Storm, and H. J. Haisma, 'Endosomal Escape Pathways for Delivery of Biologicals', J Control Release, 151 (2011), 220-8.
    83 R. A. Vega, Y. Wang, T. Harvat, S. Wang, M. Qi, A. F. Adewola, D. Lee, E. Benedetti, and J. Oberholzer, 'Modified Gold Nanoparticle Vectors: A Biocompatible Intracellular Delivery System for Pancreatic Islet Cell Transplantation', Surgery, 148 (2010), 858-65; discussion 65-6.
    84 L. Vigderman, B. P. Khanal, and E. R. Zubarev, 'Functional Gold Nanorods: Synthesis, Self-Assembly, and Sensing Applications', Adv Mater, 24 (2012), 4811-41, 5014.
    85 A. von Harpe, H. Petersen, Y. Li, and T. Kissel, 'Characterization of Commercially Available and Synthesized Polyethylenimines for Gene Delivery', J Control Release, 69 (2000), 309-22.
    86 K. Wang, E. Schonbrun, and K. B. Crozier, 'Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from near-Field Coupling between Gold Particle and Gold Film', Nano Lett, 9 (2009), 2623-9.
    87 Z. Wang, M. Gerstein, and M. Snyder, 'Rna-Seq: A Revolutionary Tool for Transcriptomics', Nat Rev Genet, 10 (2009), 57-63.
    88 R. Weissleder, 'A Clearer Vision for in Vivo Imaging', Nat Biotechnol, 19 (2001), 316-7.
    89 A. Wijaya, S. B. Schaffer, I. G. Pallares, and K. Hamad-Schifferli, 'Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods', ACS Nano, 3 (2009), 80-6.
    90 W. Xia, P. Wang, C. Lin, Z. Li, X. Gao, G. Wang, and X. Zhao, 'Bioreducible Polyethylenimine-Delivered Sirna Targeting Human Telomerase Reverse Transcriptase Inhibits Hepg2 Cell Growth in Vitro and in Vivo', J Control Release, 157 (2012), 427-36.
    91 H. W. Yang, H. L. Liu, M. L. Li, I. W. Hsi, C. T. Fan, C. Y. Huang, Y. J. Lu, M. Y. Hua, H. Y. Chou, J. W. Liaw, C. C. Ma, and K. C. Wei, 'Magnetic Gold-Nanorod/ Pnipaamma Nanoparticles for Dual Magnetic Resonance and Photoacoustic Imaging and Targeted Photothermal Therapy', Biomaterials, 34 (2013), 5651-60.
    92 J. Yang, C. Song, H. Sun, L. Wu, L. Tang, X. Leng, P. Wang, Y. Xu, Y. Li, and H. Guan, '[Polymeric Nanoparticles with Therapeutic Gene for Gene Therapy: I. Preparation and in Vivo Gene Transfer Study]', Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 22 (2005), 438-42.
    93 Xingchen Ye, Linghua Jin, Humeyra Caglayan, Jun Chen, Guozhong Xing, Chen Zheng, Vicky Doan-Nguyen, Yijin Kang, Nader Engheta, Cherie R. Kagan, and Christopher B. Murray, 'Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives', ACS Nano, 6 (2012), 2804-17.
    94 G. Zhang, J. B. Jasinski, J. L. Howell, D. Patel, D. P. Stephens, and A. M. Gobin, 'Tunability and Stability of Gold Nanoparticles Obtained from Chloroauric Acid and Sodium Thiosulfate Reaction', Nanoscale Res Lett, 7 (2012), 337.
    95 Yue Zhang, Wenzhong Li, Lailiang Ou, Weiwei Wang, Evgenya Delyagina, Cornelia Lux, Heiko Sorg, Kristina Riehemann, Gustav Steinhoff, and Nan Ma, 'Targeted Delivery of Human Vegf Gene Via Complexes of Magnetic Nanoparticle-Adenoviral Vectors Enhanced Cardiac Regeneration', PLoS ONE, 7 (2012), e39490.
    96 Z. Zhang, J. Wang, and C. Chen, 'Gold Nanorods Based Platforms for Light-Mediated Theranostics', Theranostics, 3 (2013), 223-38.
    97 T. S. Zimmermann, A. C. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N. Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K. Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. Rohl, S. Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J. Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manoharan, H. P. Vornlocher, and I. MacLachlan, 'Rnai-Mediated Gene Silencing in Non-Human Primates', Nature, 441 (2006), 111-4.
    98 基因治療的原理與應用, (九州圖書文物有限公司, 2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE