簡易檢索 / 詳目顯示

研究生: 簡于涵
論文名稱: 於曲面下操作之軟性觸覺感測器特性分析
The Characteristic Analysis of Flexible Tactile Sensors under Curved Surface
指導教授: 陳榮順
羅丞曜
口試委員: 邱一
陳宗麟
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 軟性電子電容式觸覺感測器彎曲測試
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前軟性觸覺感測器大多仍著重於平面下量測結果,對軟性觸覺感測器來說,能於不同曲面下操作為一大優勢。雖然已有文獻分析電容式軟性觸覺感測器於曲面下施力操作情形,但在相同施力下,電容值與曲率半徑間的關係尚未釐清。因此本研究製作一電容式軟性觸覺感測器,首先針對元件在不同曲率半徑下做容忍度分析,了解元件材料破壞點及元件在不同曲面下初始電容及曲率半徑之間的關係,再將元件操作於不同曲面下,找出元件在不同曲率半徑下,電容值與施力大小之關係,以便了解元件於曲面操作時,可操作之範圍及電容值變化的趨勢。
    本研究所製作之觸覺感測器以PET、PDMS等可撓性材料為基板與結構層,ITO為電極材料。量測時,採用客製化之力學測試機台進行彎曲測試,並使用電壓電容轉換器,進行元件電容值之量測;曲面施力操作部分,使用不同半徑之壓克力半圓當背板做支撐,並以力規施力,找出不同曲率半徑下施力大小與電容值關係,最後探討實驗結果並與模擬結果比較。


    摘要 I 致謝 II 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究背景與動機 10 1.4 論文架構 13 第二章 感測原理與模擬分析 14 2.1 觸覺感測器原理 14 2.2 平行電容板公式推導 17 2.3 模擬分析 20 2.3.1 彎曲模擬 21 2.3.1.1 曲率半徑計算公式推導 22 2.3.1.2 元件彎曲模擬 24 2.3.2 曲面施力模擬 32 2.4 總結 33 第三章 元件製程結果 35 3.1 元件製造流程 35 3.2 側壁層結構 39 3.2.1 PDMS旋塗厚度 40 3.2.2 ICP深蝕刻矽模仁與抗沾黏 41 3.2.3 光阻模仁 43 3.3 電極製作 44 3.3.1 金屬電極製程 45 3.3.2 ITO電極製程 46 3.3.3 多層電極製程 48 3.4 多層結構之對準 48 3.5 元件各層之黏合 49 3.6 總結 50 第四章 實驗機台架設及實驗結果 51 4.1 實驗機台架設 51 4.2 量測結果及討論 54 4.2.1 彎曲量測 55 4.2.2 曲面施力 58 4.3 實驗與模擬比較與結果討論 60 4.4 總結 63 第五章 結論與未來工作 65 5.1 結論 65 5.2 未來工作 66 參考文獻 68

    [1]二○一○年全球「軟性電子產業」起飛,台灣業者能搶占商機?可攜式電子設計雜誌網。 2011年8月30日,取自: http://pdt.acesuppliers.com/meg/meg_1.asp?mgzid=8068911120061251164627602&idxid=7535
    [2]軟性電子,產業技術白皮書,經濟部技術處,(2008年)。
    [3]A. Frucci. (2011). ''Nokia's flexible smartphone prototype is pretty crazy,'' Retrieved Oct. 29, 2011, from http://dvice.com/archives/2011/10/nokias-flexible.php
    [4]機器人發展簡史(2009年2月1日),環球科學雜誌網。2011年10月15日,取自:http://big5.xinhuanet.com/gate/big5/news.xinhuanet.com/tech/2007-02/01/content_5683606.htm
    [5]D. J. Beebe, D. D. Denton, R. G. Radwin, and J. G. Webster, "A silicon-based tactile sensor for finger-mounted applications," IEEE Transactions on Biomedical Engineering, vol. 45, pp. 151-159, 1998.
    [6]W. H. Ko and Q. Wang, "Touch mode capacitive pressure sensors," Sensors and Actuators A: Physical, vol. 75, pp. 242-251, 1999.
    [7]S. Guo, J. Guo, and W. H. Ko, "A monolithically integrated surface micromachined touch mode capacitive pressure sensor," Sensors and Actuators A: Physical, vol. 80, pp. 224-232, 2000.
    [8]E.-S. Hwang and Y.-J. Kim, "A Polymer-based Flexible Tactile Sensor and Its Application to Robotics," The 6th Annual IEEE Conference on Sensors, pp. 784-787, 28-31 Oct. 2007, Georgia, USA.
    [9]W.-Y. Chang, T.-H. Fang, S.-H. Yeh, and Y.-C. Lin, "Flexible Electronics Sensors for Tactile Multi-Touching," The 8th Annual IEEE Conference on Sensors, pp. 1188-1203, 25-28 Oct. 2009, Christchurch, New Zealand.
    [10]M. Y. Cheng, X.-H. Huang, C.-W. Ma, and Y.-J. Yang, "A flexible capacitive tactile sensing array with floating electrodes," Journal of Micromechanics and Microengineering, vol. 19, pp. 115001-1-115001-10, 2009.
    [11]M. Y. Cheng, C. L. Lin, and Y. J. Yang, "Tactile and shear stress sensing array using capacitive mechanisms with floating electrodes," The 24th International Conference on Micro Electro Mechanical Systems (MEMS 2010), pp. 228-231, 24-28 Jan. 2010, Hong Kong, China.
    [12]Y. F. Lan, W. C. Peng, Y. H. Lo, and J. L. He, "Durability under mechanical bending of the indium tin oxide films deposited on polymer substrate by thermionically enhanced sputtering," Organic Electronics, vol. 11, pp. 670-676, 2010.
    [13]Y. S. H. Kim, W. J. Eun, K. T. Choa, and S. Hoon, "Mechanical reliability of transparent conducting IZTO film electrodes for flexible panel displays," Applied Surface Science, vol. 257, pp. 8134-8138, 2011.
    [14]S.-H. Choa, C.-K. Cho, W.-J. Hwang, K. T. Eun, and H.-K. Kim, "Mechanical integrity of flexible InZnO/Ag/InZnO multilayer electrodes grown by continuous roll-to-roll sputtering," Solar Energy Materials and Solar Cells, vol. 95, pp. 3442-3449, 2011.
    [15]J. A. Dobrzynska and M. A. M. Gijs, "Flexible polyimide-based force sensor," Sensors and Actuators A: Physical, vol. 173, pp. 127-135, 2012.
    [16]K.-H. Choi, J.-A. Jeong, J.-W. Kang, D.-G. Kim, J. K. Kim, S.-I. Na, D.-Y. Kim, S.-S. Kim, and H.-K. Kim, "Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells," Solar Energy Materials and Solar Cells, vol. 93, pp. 1248-1255, 2009.
    [17]A. Wisitsoraat, V. Patthanasetakul, T. Lomas, and A. Tuantranont, "Low cost thin film based piezoresistive MEMS tactile sensor," Sensors and Actuators A: Physical, vol. 139, pp. 17-22, 2007.
    [18]C.-S. Park, J. Park, and D.-W. Lee, "A piezoresistive tactile sensor based on carbon fibers and polymer substrates," Microelectronic Engineering, vol. 86, pp. 1250-1253, 2009.
    [19]J.-E. Han, D. Kim, and K.-S. Yun, "All-polymer hair structure with embedded three-dimensional piezoresistive force sensors," Sensors and Actuators A: Physica, accepted 29 March 2012.
    [20]J. S. X. Chen, S. Yang, S. Motojima, "Biomimetic Tactile Sensors with Fingerprint-Type Surface Made of Carbon Microcoils/Polysilicone," The Japan Society of Applied Physics, vol. 45, pp. L1019-L1021, 2006.
    [21]S. Takenawa, "A soft three-axis tactile sensor based on electromagnetic induction," the 5th IEEE International Conference on Mechatronics, pp. 1-6, 14-17 Apr. 2009, Málaga, Spain.
    [22]M. A. Qasaimeh, S. Sokhanvar, J. Dargahi, and M. Kahrizi, "PVDF-Based Microfabricated Tactile Sensor for Minimally Invasive Surgery," Journal of Microelectromechanical Systems, vol. 18, pp. 195-207, 2009.
    [23]C. Li, P.-M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, "Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer," Journal of Microelectromechanical Systems, vol. 17, pp. 334-341, 2008.
    [24]A. Shashank, M. I. Tiwana, S. J. Redmond, and N. H. Lovell, "Design, simulation and fabrication of a low cost capacitive tactile shear sensor for a robotic hand," 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 4132-4135, Sep. 2-6, 2009, Minnesota, USA.
    [25]H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, "Normal and Shear Force Measurement Using a Flexible Polymer Tactile Sensor With Embedded Multiple Capacitors," Journal of Microelectromechanical Systems, vol. 17, No. 4, pp. 934-942, 2008.
    [26]莊承鑫、陳志緯,"可撓式觸覺感測器之發展與未來",電子月刊,第十六卷,第一期,2010。
    [27]S.-I. Park, J.-H. Ahn, X. Feng, S. Wang, Y. Huang, and J. A. Rogers, "Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates," Advanced Functional Materials, vol. 18, pp. 2673-2684, 2008.
    [28]王詠辰,可檢測正向力和剪力之透明軟性觸覺感測器系,國立清華大學動力機械工程學系碩士論文,2011。
    [29]AZ P4620 Photoresist Data Package, AZ Electronic Materials.
    Retrieved Sep. 11, 2011, from http://www.az-em.com/PDFs/p4620/az_p4620_photoresist.pdf
    [30]透明導電薄膜ITO,國立高雄第一科技大學,高雄市,2011年11月13日,取自: http://www2.nkfust.edu.tw/~johnfu/mold%20teaching%20materials/7%20transparent%20film.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE