研究生: |
方文琦 Fang, Wen-Chi |
---|---|
論文名稱: |
具備溫度補償之高Q值鈮酸鋰共振器於低相位雜訊振盪器之應用 A VHF Temperature Compensated Lithium Niobate-on-Oxide Resonator with High Q for Low Phase Noise Oscillators |
指導教授: |
李昇憲
Li, Sheng-Shian |
口試委員: |
吳名清
陳榮順 Chen, Rong-Shun 馮國華 Feng, Guo-Hua |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | X切面鈮酸鋰 、壓電薄膜共振器 、水平剪切模態 、壓電振盪器 、TCF補償 、高品質因數 |
外文關鍵詞: | X-cut Lithium niobate, Piezoelectric resonators, Piezoelectric oscillators, Shear horizontal mode, High quality factor, Temperature compensation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用單晶X切面的鈮酸鋰壓電薄膜(Single Crystal X-cut Lithium Niobate)以及二氧化矽組成複合材料實現高性能共振器,我們利用二氧化矽具備正頻率溫度係數(Temperature Coefficient of Frequency, TCf)的特性,能夠與鈮酸鋰互補,達到溫度補償效果以改善元件的溫度穩定性,並透過優化固定樑端設計,製作出高品質因數(Quality Factor,簡稱Q)的超高頻水平剪切模態之平板聲波共振器。
本研究之元件利用指叉狀電極(Inter-digital Electrodes)設計以激發出水平剪切模態,由於水平剪切模態在所選擇的X切面鈮酸鋰材料中具有高機電耦合係數的優勢,因此本文以此作為共振器的目標模態,並使用模擬軟體COMSOL進行有限元素分析法(Finite Element Method, FEM)預測設計結果,模擬出元件共振時的模態以及頻率響應。
為了實現元件,本文利用市售的單晶X切面的鈮酸鋰薄膜晶片,對其進行表面微加工製程(Surface Micromachining)技術來製作共振器元件,並根據學術界有限的資源,設計了兩套製程流程,以實現鈮酸鋰薄膜共振器以及鈮酸鋰/二氧化矽溫度補償共振器。製程流程可區分為三個階段,第一階段為黃光微影,定義指叉狀電極與蝕刻槽;第二階段為蝕刻製程,分別對硬擋層及鈮酸鋰進行乾蝕刻;第三階段為元件的釋放,方能使共振器結構懸浮。
根據本文所設計的製程製作出來的共振器量測結果在空氣中Q值最高可達到1,600,真空中最高更可達到3,900以上,而機電耦合係數(Electromechanical Coupling Coefficient, kt2)大於3.8%。此外,評量整體元件的表現的還有性能指標(Figure of Merit, FOM),其計算方式為FOM=〖k_t〗^2×Q,本文元件FOM的最佳值為148。
This work reports a 40-MHz lithium niobate-on-oxide (LN/SiO2) micromechanical resonator which simultaneously features a compensated temperature coefficient of frequency (TCf) of -13 ppm/°C and a record high Q >3,900 in vacuum (Q >1,600 in air) for low phase noise oscillators.
A high-quality 0.7-μm X-cut LN thin film atop a 2-μm SiO2 compensation layer was used to form the body of the proposed resonator based on a quasi-fundamental shear horizontal (Q-SH0) plate wave with acoustic propagation in 170° rotated from the Y-axis.
The proposed LN-SiO2 resonator is suspended with a 5-μm narrow-width supporting beam to mitigate the acoustic energy loss to substrate, thus exhibiting a best-case Q of 3,900 in vacuum with keff2 > 3.8% (FOM = keff2×Q > 148). The closed-loop oscillator was demonstrated with a commercial phase-locked loop (Zurich HF2LI PLL) under a loop bandwidth of 90 kHz. Measured phase noise for the 40-MHz LN-SiO2 Q-SH0 wave oscillator at 1 kHz and 10 kHz offsets are -110 dBc/Hz and -123 dBc/Hz, respectively, with a minimal bias instability of only 6.2 ppb.
[1] K. E. Petersen, “Silicon as a mechanical materials,” Proceedings of the IEEE, vol. 70, pp. 420-457, 1982.
[2] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, pp. 1552-1574, 1998.
[3] M. Madou, Fundamentals of Microfabrication, CRC Press, New York, 1997.
[4] W. Fang, S.-S. Li, C.-L. Cheng, C.-I. Chang, W.-C. Chen, Y.-C. Liu, M.-H. Tsai, C. Sun, “CMOS MEMS: A key technology towards the “More than Moore” era,” Transducers 2013, Barcelona, Spain, June 2013, pp. 2513-2518.
[5] G. K. Fedder, R. T. Howe, T.-JK. Liu, and E. P. Quevy. “Technologies for cofabricating MEMS and electronics,” Proceedings of the IEEE, vol. 96, pp. 306–322, 2008.
[6] A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Microsystems & Nanoengineering, vol. 1, Article number: 15005, 2015.
[7] H. A. C. Tilmans, W. D. Raedt, and E. Beyne, “MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’,” Journal of Micromechanics and Microengineering, vol. 13, S139-S163, 2003.
[8] ITRS (International Technology Roadmap for Semiconductors), 2011 Edition. The International Technology Roadmap, 2011; http://www.itrs.net/reports.html.
[9] J. Liu, Y.-C. Tai, K. Pong, and C.-M. Ho, “Micromachined channel/pressure sensor systems for micro flow studies,” Transducers 1993, Yokohama, Japan, 1993, pp. 995–99.
[10] S.-Y. Lee, H.-W. Tung, W.-C. Chen, and W. Fang, “Thermal Actuated Solid Tunable Lens,” IEEE Journal of Photonics Technology Letters, vol 18, pp 2191-2193, 2006.
[11] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low g application,” Sensors and Actuators A, vol. 54, pp 472-476, 1996.
[12] J. Chae, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-g Micromachined Silicon Capacitive Accelerometer,” IEEE J. of MEMS, vol. 14, pp 235-241, 2005.
[13] H. Johari, J. Shah, and F. Ayazi, “High frequency XYZ-axis single-disk silicon gyroscope,” IEEE MEMS 2008, Tucson, AZ, pp. 856-859, January 2008.
[14] A. A. Trusov, A.R. Schofield, and A.M. Shkel, “Gyroscope architecture with structurally forced anti-phase drive-mode and linearly coupled anti-phase sense-mode,” Transducers 2009, Denver, CO, pp. 660-663, June 2009.
[15] J. J. Neumann Jr., and K. J. Gabriel, “CMOS-MEMS membrane for audio-frequency acoustic actuation,” Sens. and Actuators A, vol. 95, pp. 175-182, 2002.
[16] P. V. Loeppert, and S. B. Lee, “SiSonicTM-The first commercialized MEMS microphone”, Proc. Solid-State Sensors Actuators and Microsystems Workshop, Hilton Head Island, SC, pp. 27-30, June 2006.
[17] W. C. Tang, T.-C. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators, vol. 20, pp. 25–32, 1989.
[18] L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC processed electrostatic micromotors,” IEEE IEDM, San Francisco, CA, pp 666–69, 1988.
[19] R. R. A. Syms, H. Zou, J. Yao, D. Uttamchandani and J Stagg, “Scalable electrothermal MEMS actuator,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1633-1639, 2004.
[20] Analog Device Inc., http://www.analog.com/en/products/sensors-mems/accelerometers.html
[21] ST Microelectronics, http://eu.st.co
[22] Knowles Electronics,www.knowles.com/eng/Products/Microphones
[23] Sensirion AG, https://www.sensirion.com/en/
[24] J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C.T.‐C. Nguyen, “High‐Q UHF micromechanical radial‐contour mode disk resonators,” IEEE J. of MEMS, vol. 14, pp. 1298–1310, 2005.
[25] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 3, pp. 1-4, March 2012.
[26] A. Rahafrooz, A. Hajjam, and S. Pourkamali, “Thermal actuation of high frequency micromechanical resonators,” IEEE SOI conference, pp. 1-2, October 2009.
[27] H. Zhu and J. E.-Y. Joshua, “AlN piezoelectric on silicon MEMS resonator with boosted Q using planar patterned phononic crystals on anchors,” IEEE Micro Electro Mechanical Systems (MEMS), pp. 797-800, January 2015.
[28] H. J. Hall, A. Rahafrooz, J. J. Brown, V. M. Bright, and S. Pourkamali, “Thermally actuated I-shaped electromechanical VHF resonators,” IEEE Micro Electro Mechanical Systems (MEMS), pp.737-740, March 2012.
[29] R. H. Olsson III, , R. H., Wojciechowski, K. E., Baker, M. S., Tuck, M. R., and Fleming, J. G., “Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers,” IEEE/ASME J. Microelectromech. Syst., vol. 18, no. 3 pp. 671-678, June 2009.
[30] R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 3 pp. 334-345, March 2012.
[31] I. E. Kuznetsova, B. D. Zaitsev, S. G. Joshi, and I. A. Borodina, “Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalite,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, pp. 322-328, January 2001.
[32] S. Gong and G. Piazza, “Laterally vibrating lithium niobate MEMS resonators with high electromechanical coupling and quality factor,” Proceedings, IEEE International Ultrasonic Symposium, pp. 1051-1054, October 2012.
[33] S. Gong and G. Piazza, “Monolithic multi-frequency wideband RF filters using two-port laterally vibrating lithium niobate MEMS resonators,” IEEE/ASME Journal of Microelectromechanical Systems, pp. 1188-1197, October 2014.
[34] Y. H. Song and S. Gong, “Elimination of spurious modes in SH0 lithium niobate laterally vibrating resonators,” IEEE Electron Device Letters, vol. 36, no. 11, pp. 1198-1201, November 2015.
[35] Y. H. Song and S. Gong, “Spurious mode suppression in SH0 lithium niobate laterally vibrating MEMS resonators,” IEEE Electron Devices Meeting (IEDM), pp. 18.5.1-18.5.4, December 2015.
[36] Y. H. Song and S. Gong, “Arraying SH0 lithium niobate laterally vibrating resonators for mitigation of higher order spurious modes,” IEEE Micro Electro Mechanical Systems (MEMS), pp. 111-114, January 2016.
[37] S. Gong and G. Piazza, “Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 403-414, January 2013.
[38] L. Shi and G. Piazza, “Lithium Niobate on Silicon Dioxide Suspended Membranes: a Technology Platform for Engineering the Temperature Coefficient of Frequency of High Electromechanical Coupling Resonators,” IEEE Journal of Microelectromechanical Systems, vol. 23, no. 6, pp. 1318-1329, April 2014.
[39] L. Rayleigh, “On waves propagating along the plane surface of an elastic solid.” Proc. London Math. Soc., vol. 7, pp. 4-11, Nov. 1885.
[40] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Applied physics letters, vol. 7, no. 12, pp. 314-316, December 1965.
[41] G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson III, and R. Ruby, “Piezoelectric aluminum nitride thin films for microelectromechanical systems,” MRS Bulletin, vol. 37, no. 11, pp. 1051-1061, November 2012.
[42] G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. Ruppel, “Improved material constants for LiNbO3 and LiTaO3,” Proceedings, IEEE International Ultrasonics Symposium, pp. 435-438, 1990.
[43] L. C. Popa and D. Weinstein, “L-band Lamb mode resonators in gallium nitride MMIC technology,” IEEE Frequency Control Symposium (FCS), July 2014.
[44] S. Gong and G. Piazza, “Overmoded shear horizontal wave MEMS resonators using X-cut lithium niobate thin film,” IEEE Ultrasonics Symposium (IUS), September 2014.
[45] R. H. Olsson III, K. Hatter, S. J. Homeijer, M. Wiwi, M. Eichenfield, D.W. Branch, M. S. Baker, J. Nguyen, B. Clark, T. Bauer, and T. A. Friedmann, “A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication,” Sensors and Actuators A: Physical, vol. 209, pp. 183-190, March 2014.
[46] D. C. Cox, Introduction to Focused Ion Beam Nanometrology, San Rafael, CA: Morgan & Claypool Publishers, 2015.
[47] W.-S. Tan, G. W. Fang, G. Pillai, C.-C. Chen, C.-Y. Chen, C.-H. Chin, and S.-S. Li, “Fabrication and characterization of lithium-niobate thin film MEMS piezoelectric resonators,” IEEE Nano/Micro Engineered and Molecular Systems (NEMS), pp. 516-519, April 2016.