簡易檢索 / 詳目顯示

研究生: 陳稐寯
Chen, Lun-Jyun Chen
論文名稱: 具氧化鉿電荷儲存層之π形閘極奈米線複晶矽薄膜電晶體非揮發性記憶體
Pi-Gate Nanowires for the Polycrystalline Silicon Thin-Film Transistor Nonvolatile Memory with an HfO2 Trapping layer
指導教授: 吳永俊
Wu, Yung-Chun
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 42
中文關鍵詞: 非揮發性記憶體氧化鉿奈米線薄膜電晶體
外文關鍵詞: nonvolatile memory, HfO2, nanowires, thin-film transistor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Pi-gate nanowires (NWs) and the HfO2 trapping layer were introduced to the polycrystalline silicon (poly-Si) thin film transistor (TFT) nonvolatile memory (NVM). In the recent years, low-temperature poly-Si TFTs have drawn much attention because of their wide applications on active matrix crystal displays (AMLCDs), and organic light-emitting diodes (OLEDs). Furthermore, the low-temperature poly-Si TFTs will help to carry out three-dimensional integrated circuits (3D-ICs) or multilayer Si ICs for system-on–chip (SOC) and fully functional system-on-panel (SOP) applications.
    A silicon nitride film is widely used as the charge trapping layer in a nonovolatile memory, and this memory is called silicon-oxide-nitride-oxide-silicon (SONOS) memory. The fabrication of SONOS is simple and the Si3N4 film has spatial isolated traps and robustness to the defect related leakage. All these advantages, as mentioned above, are good for device scaling. In this thesis, the HfO2 film is used for better memory reliability due to the deeper conduction band.
    Multi-gate TFTs exhibit low leakage current in the off state, a high ON/OFF current ratio, a low subthreshold slope, an absence of DIBL, and favorable output characteristics. [1-10] Moreover, the multi-gate TFTs have higher program and erase speed due to the high vertical electric field at each corner.
    In this thesis, we compared the program and erase speeds of the TFT memories with NWs and single-channel (SC). Obviously, the NWs TFT memories show much higher performance. We also focused on the reliability to the memory applications. The experimental results showed that the Pi-gate NWs poly-Si TFT memories are suitable for the real applications.


    此篇論文的研究主題為具氧化鉿電荷儲存層與π形狀閘極之奈米線結構低溫複晶矽薄膜電晶體記憶體,主要應用於平面顯示器上與3D堆疊結構的非揮發性記憶體,論文中利用多晶矽為主動層以降低串聯電阻;使用氧化鉿為缺陷層以增加記憶體的可靠度;多條Pi形狀之奈米線結構以提升寫入以及抹除資料的效率,在論文列出的各項數據顯示出具氧化鉿缺陷層與π形狀閘極之多條奈米線結構低溫複晶矽薄膜電晶體非揮發性記憶體為一高效能記憶體且適合應用於系統整合之平面顯示器。
    相較於非晶矽薄膜電晶體,低溫複晶矽薄膜電晶體其主動層擁有十分高的載子遷移率,此項優點有利於電晶體尺寸的微縮以及增加電晶體的操作速度,進而有效提高積體電路元件的密度與增加晶片的功能與設計彈性,因此平面顯示器的系統整合之路邁開了一大步。氮化矽常被應用於浮停閘結構的記憶體中,使用此材料的記憶體比起傳統的多晶矽電荷儲存層更有微縮的潛力,由於氧化鉿與氧化矽的傳導帶差值大於氮化矽與氧化矽的傳導帶差值,因此論文中使用了氧化鉿取代氮化矽為缺陷層的材料,以進一步增加記憶體的可靠度。在先前的研究已經證實π形狀之多條奈米線閘極結構能提高多晶矽薄膜電晶體的電晶體特性[1-10],靠著其優異的閘級控制能力,亦能加速資料的寫入以及抹除,在論文的實驗數據中,證明了此特性。
    論文內文中將會比較多條奈米線以及傳統單通道結構的資料寫入以及抹除之特性,明顯地多條奈米線結構能幫助寫入抹除速度,在極短的時間內,即可得到足夠的記憶體窗口(memory window),此外亦探討此結構的各項可靠度指標,皆明顯指出此結構具有應用於實際產品的高度價值。

    Table Captions Figure Captions Chapter 1 Introduction 1.1 Brief introduction to SONOS memoris 1.2 Motivation 1.3 Organization of this thesis Chapter 2 Basic Mechanisms and Reliability of Flash Memory 2.1 Basic Mechanisms 2.1.1 Fowler-Nordheim (FN) Tunneling 2.1.2 Channel-Hot-Carrier (CHC) Injection 2.1.3 Band-To-Band Hot Hole injection 2.2 Reliability 2.2.1 Endurance 2.2.2 Retention 2.2.3 Read Disturbs Chapter 3 Characteristics of Silicon-Oxide-HfO2-Oxide-Silicon Nonvolatile Memories with Pi-Gate Structure 3.1 Device Fabrication 3.2 Results and Discussions Chapter 4 Conclusions References

    Chapter 1
    [1-1]. Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti “Introduction to Flash Memory,” Proc. IEEE 91, 489–502, 2003.
    [1-2]. D. Kahng and S. M. Sze, Bell Syst. Tech. J. 46, 1288, 1967.
    [1-3]. Kahng D. and Sze S.M., “A floating gate and its application to memory devices”. Bell syst. Tech. J.,46, pp.1288, 1967.
    [1-4]. Harai E., Schmitz L., Troutman B., and Wang S., “A 256 bit nonvolatile static RAM”. IEEE ISSCC TECH. Dig., pp.108, 1978.
    [1-5]. Kynett V.N., Baker A., Frandrich M., Hoekstra G.,Jungroth O., Kreifels J., and Wells S., “ An in-system reprogrammable 256K CMOS Flash memory”, ISSCC Tec. Dig., pp.132, 1988.
    [1-6]. H. Oshima and S. Morozumi,” Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989.
    [1-7]. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, 48, 845, 2001.
    [1-8]. N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The Fabrication and Characterization of EEPROM Arrays on Glass Using a Low-Temperature Poly-Si TFT Process,” IEEE Trans. Electron Devices, vol. 43, p. 1930-1936, Nov. 1996.
    [1-9]. P. T. Liu, C. S. Hunag, and C. W. Chen” Polysilicon TFT technology for active matrix OLED displays,” Appl. Phys. Lett., 90, 182115, 2007.
    [1-10].B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios and R. Chau., “High Performance Fully-Depleted Tri-Gate COMS Transistors,” IEEE Trans. Electron Device Lett., vol. 24, pp. 263, 2003.
    [1-11]. Yung-Chun Wu, Ting-Chang Chang, Chun-Yen Chang, Chi-Shen Chen, and Chun-Hao Tu, Po-Tsun Liu, Hsiao-Wen Zan and Ya-Hsiang Tai, “High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure,” Appl. Phys. Lett., vol. 84, pp. 3882, 2004.
    [1-12]. Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, Chin-Cheng Ko ,Sidney Yang, Li-Wei Feng, S. M. Sze, ,Chun-Yen Chang and Chen-Hsin Lien, “Pi-shape gate polycrystalline silicon thin-film transistor for nonvolatile memory aplications,” Appl. Phys. Lett., vol. 91, pp. 213101, 2007.
    [1-13]. Yung-Chun Wu, Po-Wen Su, Chin-Wei Chang, Min-Feng Hung” Novel Twin Poly-Si Thin Film Transistors EEPROM with Tri-Gate Nanowires Structure,” IEEE Electron Device Lett., vol. 29, pp. 1226-1228, Nov. 2008.
    [1-14]. H. Wann and C. Hu,”High endurance ultra thin tunnel oxide in MONOS devices structure for dynamic memory applications,” IEEE Electron Device Lett., vol. 16, pp. 491-493, May 1995.
    [1-15]. Y. Kamagaki, S. I. Minami, T. Hagiwara, K. Furusawa, T. Furuno, K. Uchida, M. Terasawa, and K. Yamazaki, “Yield and reliability of MNOS EEPROM products,” IEEE J. Solid-State Circuits, vol. 24, pp.1714-1722, Nov. 1989.
    [1-16]. M. H. White, D. A. Adams, and B. Jiankang, “On the go with SONOS,” IEEE Circuits Devices Mag., vol. 16,pp. 22-31, Jan. 2000.
    [1-17]. Yan-Ny Tan, Wai-Kin Chim, Byung Jin Cho and Wee-Kiong Choi. “Over-Erase Phenomenon in SONOS-Type Flash Memory and its Minimization Using a Hafnium Oxide Charge Storage Layer,” IEEE Trans. Electron Devices, vol. 51, p. 1143-1147, JULY 1996.
    [1-18]. W. J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di. “Current Transport in Metal/Hafnium Oxide/Silicon Structure,” IEEE Electron Device Lett., vol. 23, p.889, 2004.
    [1-19]. G. D. Wilk, R.M. Wallace, J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” Appl. Phys. Review, vol. 89, p. 5243, 2001.
    [1-20]. T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, “Novel Multi-bit SONOS Type Flash Memory Using a High-k Charge Trapping Layer,” Symposium on VLSI Technology Digest of Technical Papers, 2003.

    Chapter 2
    [2-1]. Stanley Wolf, Silicon Processing for The VLSI ERA, Vol.3, pp.435.
    [2-2]. M. Lenzlinger, “Fowler-Mordheim Tunneling in thermal grown SiO2”, Appl. Phys. Lett., Vol. 40, pp. 278-283, 1969.
    [2-3]. P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel
    IGFETs,” IEEE J. Solid-State Circuits, Vol. 14, pp. 442, 1979.
    [2-4]. I. C. Chen, C. Kaya and J. Paterson, “Band-to-band tunneling induced substrate
    hot-electron (BBISHE) injection: A new programming mechanism for nonvolatile
    memory devices,” IEDM, pp.263, 1989.
    [2-5]. K. Tamer San, Cetin Kaya, and T. P. Ma, “Effects of Erase Source Bias On Flash EPROM Device Reliability”, Transactions on Electron Devices, Vol. 42, pp.150, 1995.
    [2-6]. P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash
    cell in program/erase cycling,” IEDM Tech. Dig., pp. 291–294, 1994.
    [2-7]. Roberto Bez, Emilic Camerlenghi, Alberto Modelli, and Angelo Visconti,
    “Introduction to Flash Memory,” Proc. IEEE, Vol. 91, pp. 489-502, 2003.
    [2-8]. Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Viscontio, “Introduction to Flash memory,” Proceedings of the IEEE, vol. 91, pp.489,2003.
    [2-9]. Van Houdt J.F., Wellekens D., Ravazzi L., and Sangiorigi E., “Soft-programming in scaled flash memory cells,” H.C. de Graaf and H.V. Kranemburg (Eds.), Proc. ESSDERC 95, The Hague (The Netherlands), pp. 549.
    Chapter 3
    [3-1]. Y. H. Lin, C. H. Chen, C. Y. Chang and T. F. Lei, “Annealing Temperature Effect on the performance of nonvolatile HfO2 SONOS-tyoe Flash Memory”, J. Vac. Sci. Technol., vol. 24,pp. 682, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE