研究生: |
楊嘉哲 Yang, Chia-Che |
---|---|
論文名稱: |
橫向主動繫泊海流發電系統基本功能縮尺模型實驗 Scale Model Study of Basic Functions of the Cross-stream Active Mooring Marine Current Power System |
指導教授: |
曹哲之
Tsao, Che-Chih |
口試委員: |
蔣小偉
Chiang, Hsiao-Wei 陳建宏 Chen, Chien-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 黑潮發電 、縮尺模型 、橫向系泊 、水翼 、躲避風浪 |
外文關鍵詞: | Cross-stream Active Mooring, storm avoidance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為驗證「橫向主動繫泊海流發電系統」在長鏈狀態下的佈置角狀態、一般海況下的穩定性以及下潛躲避風浪之可行性。橫向主動繫泊海流發電系統利用潛浮於水下的水翼牽引發電機組,透過改變水翼攻角以及重心,來改變發電機在水平以及垂直方向上的位置。先前的研究透過理論分析以及初步的縮尺模型實驗對系統進行初步研究,顯示透過改變水翼的攻角,能使系統產生一定大小的佈置角,使發電機有一定大小的橫向移動,在一般的天氣狀況下長鏈系統能維持穩定,且長鏈下潛至一定深度能躲避風浪。本研究希望更進一步地透過全系統長鏈縮尺模型的定量實驗進一步驗證該系統的基本功能。首先,依照福祿數製作對應的縮尺比例模型以及流場以進行實驗。接下來針對單一發電機-水翼單位的縮尺模型進行佈置角大小分析以及穩定性觀察。然後將多個水翼-發電機單位串起來置於泳池的實驗流場中,觀察長鏈模型佈置角與單一單位及理論分析的異同及系統的穩定性。最後將縮尺模型組合成發電長鏈,並在泳池的實驗流場中製造符合縮尺規模大小的浪,以模擬不同海況,並測試其對長鏈縮尺模型的佈置角大小、穩定性以及下潛躲避風浪能力的影響。
This research studies feasibility of deployment, stability under general sea conditions and capability of storm resistance and avoidance of the Cross-stream Active Mooring (CSAM) system for marine power generation. The CSAM technique applies a set of hydro sails attached close to multiple generator turbines on a long mooring tether, all in submerged floating state, to stablize and adjust the positions of the generator turbines in the sea. Previous studies, theoretical analyses and preliminary model observations, have shown that setting different angles of attack of the hydro sails can deploy the generators at different tether deployment angles, formation of the system can be maintained and effects of storms can be avoided and resisted by increasing submerging depth. This research further verifies the basic functions of the CSAM system through quantitative scale model experiments. First, scale models of hydro sails and generator simulators were made and tested in a water tank to achieve proper Froude scaling, including the forces and thrusts resulted from the models in the flow. Next, single stage of hydro sail and generator simulator were experimented to measure the deployment angles and observe the stability in waves. Finally, multiple stages of hydro sail-generator simulators were connected into a linear array, as designed in the CSAM concept, and tested in a pool with a flow generator under different wave conditions. Experimental results show that the system can be deployed as designed. Test results also indicate that waves in regular sea conditions had negligible effect on the model system and the linear array formation was intact under waves of a 10-year recurrence typhoon.
[1] C.C. Tsao, A.H. Feng, C. Hsieh and K.H. Fan, “Marine Current Power with Cross-stream Active Mooring: Part I”, Renewable Energy, vol. 109, pp. 144-154, 2017.
[2] F. Chen, “Kuroshio power plant development plan”, Renewable and Sustainable Energy Reviews, vol.14, no.9, pp. 2655-2668, Dec. 2010.
[3] 曹哲之 行政院科技部部駐專題研究計畫成果報告 橫向主動繫泊高效能海流發電系統 個別型計畫 計畫編號:106-2221-E-007-100
[4] C.C. Tsao, MOORING SYSTEM AND METHOD FOR POWER GENERATION SYSTEMS AND OTHER PAYLOADS IN WATER FLOWS, United States Patent No. 10807680 B2, Oct, 20, 2020.
[5] C.C. Tsao, A.H. Feng, C. Hsieh and K.H. Fan, “Marine Current Power with Cross-stream Active Mooring: Part II” Renewable Energy, vol. 127, pp. 1036-1051, 2018.
[6] Anonymous, “Power Generation Using the Kuroshio Current: Development of floating ocean current turbine system. ” IHI Engineering Review, vol. 46, no. 2, 2014.
[7] Shirasawa K. et al., “Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents”, Renewable Energy, vol. 91, pp. 144-154, 2016.
[8 ] Minesto, A. B., Company Website, http://minesto.com/, (retrieved October 2021).
[9] S.M. Lin, Y.Y. Chen, H.C. Hsu and M.S. Li, “Dynamic Stability of an Ocean Current Turbine System”, Journal of Marine Science and Engineering, vol. 8, no. 9, pp. 687, 2020.
[10 ] Jo-Ti Wu, Jiahn-Horng Chen, Ching-Yeh Hsin and Forng-Chen Chiu, “Dynamics of the FKT System with Different Mooring Lines”, Polish Maritime Research 1 (101) vol. 26, pp. 20-29,2019.
[11] Shirasawa K, “Scale-Model Experiments for the Surface Wave Influence on a Submerged Floating Ocean-Current Turbine”, energies MDPI,vol.10, no. 5, pp. 702, 2017.
[12] 邱逢琛, 科技部補助產學合作研究計畫成果精簡報告「浮游式黑潮發電先導機組設計開發關鍵技術之研究(3/3)」, 計畫編號:MOST 106-3113-E-002-002-CC2, 2017.
[13] R.G. Dean and R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, World Scientific Publishing Company, Singapore, Jan, 1991.
[14] P.C. Liu, H.S. Chen, D.-J. Doong, C.C. Kao and Y.-J.G. Hsu, Monstrous ocean waves during typhoon Krosa, Annales Geophysicae, vol. 26, European Geosciences
Union, pp. 1327~1329, 2008.
[15] S.K. Naqvi, “Scale Model Experiments on Floating Offshore Wind Turbines”, M.S. Thesis, Worcester Polytechnic Institute, May, 2012, citing Chakrabarti, S.K. Naqvi, “Offshore Structure Modeling”, World Scientific, Singapore, 1994.
[16] S.F. Hoerner, Fluid Dynamic Drag Practical Information on Aerodynamic Drag and Hydrodynamic Resistance, 1st ed. Hoerner Fluid Dynamic, Bakersfield, 1965, pp. 61.
[17] Gasch, R. et al, Wind power plants: Fundamentals, Design, Construction and Operatio, 5th ed. Springer-Verlag ,Berlin, Blade Geometr, 2012, ch.5, pp. 171.
[18]中興工程顧問股份有限公司,綠島海域海洋能發電潛力調查評估計畫,經濟部能源局,中華民國101.12
[19] E. Torenbeek and H. Wittenberg, Flight Physics, Essentials of Aeronautical Disciplines and Technology, with Historical Notes, Springer, London New York, ch.5, pp. 153.
[20] K. Wołowski, BF 109 Late Versions: Camouflage & Markings (Whites Series), Casemate Publishers, Havertown, pp.10.
[21] 澳洲的Surf Lakes 360度造浪機網址https://www.surflakes.com.au/licensees?fbclid=IwAR1KtDt4XVJT6XfyWRmb4pdkR8X5fiT6FF49INqDoxuYDml9WvFrX0wj_jk (retrieved October 2021)