簡易檢索 / 詳目顯示

研究生: 謝政霖
論文名稱: 最大化最低訊號對干擾及雜訊比之傳輸功率控制方法在感知網路與中繼站系統之應用
Max-Min SINR Based Power Control in Cognitive Radio and Relay Systems
指導教授: 洪樂文
口試委員: 林士駿
李佳翰
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 37
中文關鍵詞: 最大化最低訊號對干擾及雜訊比傳輸功率控制方法感知網路中繼站系統
外文關鍵詞: Max-Min SINR, Power Control, Cognitive Radio, Relay
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多使用者的無線通訊系統中,使用者之間的訊號干擾會嚴重影響到系統的效能。在本篇論文中,我們考慮多使用者的感知網路(cognitive radio)與中繼站系統(relay system),藉由傳輸功率控制,將系統中最低的使用者訊號對干擾及雜訊比(signal-to-interference-plus-noise ratio)最大化,並且必須滿足線性與非線性的系統條件。首先,在感知網路中,非法使用者(secondary users)會利用合法使用者(primary users)的頻譜進行資料傳送。如此一來,非法使用者會對於合法使用者產生訊號干擾,而影響到合法使用者的通訊品質。因此,在合法使用者的非線性中斷機率(outage probability)限制以及非法使用者的線性最大傳輸功率限制之下,我們藉由設計傳輸功率控制方法將最低的非法使用者訊號對干擾及雜訊比最大化。針對此非凹面(nonconvex)最佳化問題,根據Nonlinear Perron-Frobenius定理,我們提出疊代演算法並且證明此演算法會收斂至最佳的傳輸功率。另外,考慮放大轉發式(amplified-and-forward)的中繼站系統,我們假設來源端(source)和中繼站是多天線而目的端(destinations)都是單天線。在來源端和中繼站的最大傳輸功率限制之下,透過傳輸功率控制、來源端波束賦形(beamforming)以及中繼站預先編碼器(precoder)的設計,將系統中最低的訊號對干擾及雜訊比最大化。我們提出疊代設計方法,輪流設計來源端和中繼站收斂至區域最佳解。固定中繼站,我們利用Nonlinear Perron-Frobenius定理和上傳下傳偶性(uplink-downlink duality),設計出最佳的傳輸功率控制方法以及來源端波束賦形。固定來源端,我們利用半定放寬(semi-definite relaxation)和隨機化方法(randomization technique),處理中繼站預先編碼器設計時的rank-one限制。最後,電腦模擬顯示所提出的演算法和設計方法擁有快速收斂的特性。


    Abstract i Contents ii 1 Introduction 1 2 Power Control in Cognitive Radio Network 5 2.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . 5 2.2 Iterative Power Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Numerical Simulations and Performance Comparisons . . . . . . . . . . . . . 11 3 Power Control, Source Beamformer and Relay Precoder Design in Relay System 16 3.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . 16 3.2 Iterative Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Numerical Simulations and Performance Comparisons . . . . . . . . . . . . . 24 4 Conclusion 26 5 Appendix 27 5.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.4 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.5 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.6 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.7 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] G. L and C. Ibars, Cooperative Cognitive Systems. InTech.
    [2] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 641–646, Nov. 1993.
    [3] R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341–1347, Sep. 1995.
    [4] C. W. Tan, M. Chiang, and R. Srikant, “Maximizing sum rate and minimizing MSE on multiuser downlink: Optimality, fast algorithms and equivalence via max-min SINR,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 6127–6143, Dec. 2011.
    [5] D. W. H. Cai, T. Q. S. Quek, and C. W. Tan, “A unified analysis of max-min weighted SINR for MIMO downlink system,” IEEE Trans. Signal Process., vol. 59, no. 8, pp. 3850–3862, Aug. 2011.
    [6] D. W. H. Cai, T. Q. S. Quek, C. W. Tan, and S. H. Low, “Max-min SINR coordinated multipoint downlink transmission-duality and algorithms,” IEEE Trans. Signal Process., vol. 60, no. 10, pp. 5384–5895, Oct. 2012.
    [7] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Trans. Wireless Commun.,
    vol. 1, no. 1, pp. 46–55, Jan. 2002.
    [8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, 2004.
    [9] J. Papandriopoulos, J. Evans, and S. Dey, “Optimal power control for Rayleigh-faded multiuser systems with outage constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2705–2715, Nov. 2005.
    [10] C. W. Tan, “Optimal power control in Rayleigh-fading heterogeneous networks,” in Proc. IEEE International Conference on Computer Communications (INFOCOM), Shanghai, China, Apr. 2011, pp. 2552–2560.
    [11] U. Krause, “Concave Perron-Frobenius theory and applications,” Nonlinear Anal, vol. 47, pp. 1457–1466, May 2001.
    [12] V. D. Blondel, L. Ninove, and P. V. Dooren, “An affine eigenvalue problem on the nonnegative orthant,” Linear Algebra Its Appl., vol. 404, pp. 69–84, Jul. 2005.
    [13] N. Khajehnouri and A. H. Sayed, “Distributed MMSE relay strategies for wireless sensor networks,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3336–3348, Jul. 2007.
    [14] V. Havary-Nassab, S. Shahbazpanahi, A. Grami, and Z. Q. Luo, “Distributed beamforming for relay networks based on second-order statistics of the channel state information,”
    IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4306–4316, Sep. 2008.
    [15] B. K. Chalise and L. Vandendorpe, “Optimization of MIMO relays for multipointto-multipoint communications: Nonrobust and robust designs,” IEEE Trans. Signal Process., vol. 58, no. 12, pp. 6355–6368, Dec. 2010.
    [16] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge University Press, 2005.
    [17] C. B. Chae, T. Tang, R. W. H. Jr., and S. Cho, “MIMO relaying with linear processing for multiuser transmission in fixed relay networks,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 727–738, Feb. 2008.
    [18] R. Zhang, C. C. Chai, and Y. C. Liang, “Joint beamforming and power control for multiantenna relay broadcast channel with QoS constraints,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 726–737, Feb. 2009.
    [19] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan. 2006.
    [20] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality,” IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.
    [21] W. Yu, “Uplink-downlink duality via minimax duality,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 361–374, Feb. 2006.
    [22] W. Yang and G. Xu, “Optimal downlink power assignment for smart antenna systems,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Seattle, WA, USA,
    May 1998, pp. 3337–3340.
    [23] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–28, Jan. 2004.
    [24] Z. Q. Luo, W. K. Ma, A. M. C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, pp. 20–34, May 2010.
    [25] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 1.21,” ../../cvx, Apr. 2011.
    [26] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. New York: Academic, 1979.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE